Citation: | HE Dongmei, YOU Qi, WU Jie. Application of microbial vaccines in type 1 diabetes mellitus[J]. Journal of China Pharmaceutical University, 2018, 49(2): 158-164. DOI: 10.11665/j.issn.1000-5048.20180204 |
[1] |
Mejía-León ME,Barca AM.Diet,microbiota and immune system in type 1 diabetes development and evolution[J].Nutrients,2015,7(11):9171-9184.
|
[2] |
Campbell-Thompson M,Fu A,Kaddis JS,et al.Insulitis and β-cell mass in the natural history of type 1 diabetes[J].Diabetes,2016,65(3):719-731.
|
[3] |
Lu SP,Jin L,Wu J.Clinical development of type 1 diabetes vaccine[J].J China Pharm Univ(中国药科大学学报),2014,45(6):625-631.
|
[4] |
Cilião HL,Ribeiro DL,Camargo-Godoy RB,et al.Cytotoxic and genotoxic effects of high concentrations of the immunosuppressive drugs cyclosporine and tacrolimus in MRC-5 cells[J].Exp Toxicol Pathol,2015,67(2):179-187.
|
[5] |
Larsson HE,Lernmark Å.Vaccination against type 1 diabetes[J].J Intern Med,2011,269(6):626-635.
|
[6] |
Brown K,Godovannyi A,Ma C,et al.Prolonged antibiotic treatment induces a diabetogenic intestinal microbiome that accelerates diabetes in NOD mice[J].Isme Journal,2016,10(2):321-332.
|
[7] |
Tun HM,Konya T,Takaro TK,et al.Exposure to household furry pets influences the gut microbiota of infant at 3-4 months following various birth scenarios[J].Microbiome,2017,5(1):40.
|
[8] |
Livanos AE,Greiner TU,Vangay P,et al.Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice[J].Nat Microbiol,2016,1(11):16140.
|
[9] |
Knip M,Honkanen J.Modulation of type 1 diabetes risk by the intestinal microbiome[J].Curr Diab Rep,2017,17(11):105.
|
[10] |
Op de Beeck A,Eizirik DL.Viral infections in type 1 diabetes mellitus-why the β cells[J]?Nat Rev Endocrinol,2016,12(5):263-273.
|
[11] |
Kostic, Aleksandar, Gevers, et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes[J].Cell Host Microb,2015,17(2):260-273.
|
[12] |
Johnson AT.The hygiene hypothesis[J].IEEE Pulse,2016,7(1):50-51.
|
[13] |
Bach JF.The hygiene hypothesis in autoimmunity:the role of pathogens and commensals[J] Nat Rev Immunol,2018,18(2):105-120.
|
[14] |
Dénes B,Fodor I,Langridge WH.Persistent suppression of type 1 diabetes by a multicomponent vaccine containing a cholera toxin B subunit-autoantigen fusion protein and complete Freund′s adjuvant[J].Clin Dev Immunol,2013,2013(12):578786.
|
[15] |
Mori Y,Kodaka T,Kato T,et al.Critical role of IFN-γ in CFA-mediated protection of NOD mice from diabetes development[J].Int Immunol,2009,21(11):1291-1299.
|
[16] |
Lee IF,Qin H,Trudeau J,et al.Regulation of autoimmune diabetes by complete Freund′s adjuvant is mediated by NK cells[J].J Immunol,2004,172(2):937-942.
|
[17] |
Petrovsky N.Immunomodulation with microbial vaccines to prevent type 1 diabetes mellitus [J].Nat Rev Endocrinol,2010,6(3):131-138.
|
[18] |
Silva DG,Charlton B,Cowden W,et al.Prevention of autoimmune diabetes through immunostimulation with Q fever complement-fixing antigen[J].Ann N Y Acad Sci,2003,1005(1):423-430.
|
[19] |
White M,Webster G,Leonard F,et al.Innate IFN-γ ameliorates experimental autoimmune encephalomyelitis and promotes myeloid expansion and PDL-1 expression[J].Sci Rep,2018,8(1):259.
|
[20] |
Luca S,Mihaescu T.History of BCG vaccine[J].Maedica,2013,8(1):53.
|
[21] |
Iqbal NT,Hussain R.Non-specific immunity of BCG vaccine:a perspective of BCG immunotherapy[J].Trials Vaccinol,2014,3(C):143-149.
|
[22] |
Surendar J,Indulekha K,Hoerauf A,et al.Immunomodulation by helminths:similar impact on type 1 and type 2 diabetes[J]?Parasite Immunol,2017,39(5):e12401.
|
[23] |
Finlay CM,Stefanska AM,Walsh KP,et al.Helminth products protect against autoimmunity via innate type 2 cytokines IL-5 and IL-33,which promote eosinophilia[J].J Immunol,2016,196(2):703-714.
|
[24] |
Hernandez JL, Leung G, McKay DM. Cestode regulation of inflammation and inflammatory diseases[J].Int J Parasitol,2013,43(3/4):233-243.
|
[25] |
Fleming JO,Weinstock JV.Clinical trials of helminth therapy in autoimmune diseases:rationale and findings[J].Parasite Immunol,2015,37(6):277-292.
|
[26] |
Tracy S,Drescher KM,Chapman NM,et al.Toward testing the hypothesis that group B coxsackieviruses(CVB)trigger insulin-dependent diabetes:inoculating nonobese diabetic mice with CVB markedly lowers diabetes incidence[J].J Virol,2002,76(23):12097-12111.
|
[27] |
Filippi CM,Estes EA,Oldham JE,et al.Immunoregulatory mechanisms triggered by viral infections protect from type 1 diabetes in mice[J].J Clin Invest,2009,119(6):1515-1523.
|
[28] |
Mccall KD,Thuma JR,Courreges MC,et al.Toll-like receptor 3 is critical for coxsackievirus B4-induced type 1 diabetes in female NOD mice[J].Endocrinology,2015,156(2):453-461.
|
[29] |
Bignon A, Watt AP,Linterman MA.Escherichia coli heat-labile enterotoxin B limits T cells activation by promoting immature dendritic cells and enhancing regulatory T cell function[J].Front Immunol,2017,8:560.
|
[30] |
Ola TO,Williams NA.Protection of non-obese diabetic mice from autoimmune diabetes by Escherichia coli heat-labile enterotoxin B subunit[J].Immunology,2006,117(2):262-270.
|
[31] |
Xuan J,Wang L,Yin H,et al.The cost-effectiveness of OM-85 in managing respiratory tract infections in China[J].J Med Econ,2015,18(3):167-172.
|
[32] |
Alyanakian MA, Grela F, Aumeunier A, et al. Transforming growth factor-beta and natural killer T-cells are involved in the protective effect of a bacterial extract on type 1 diabetes[J].Diabetes,2006,55(1):179-185.
|
[33] |
Hartmann B,Bellmann K,Ghiea I,et al.Oral insulin for diabetes prevention in NOD mice:potentiation by enhancing Th2 cytokine expression in the gut through bacterial adjuvant[J].Diabetologia,1997,40(8):902-909.
|
[34] |
Aude A, Françoise G, Abdulraouf R, et al. Systemic Toll-like receptor stimulation suppresses experimental allergic asthma and autoimmune diabetes in NOD mice[J].Plos One,2010,5(7):e11484.
|
[35] |
Caramalho I,Rodrigues-Duarte L,Perez A,et al.Regulatory T cells contribute to diabetes protection in lipopolysaccharide-treated non-obese diabetic mice[J].Scand J Immunol,2011,74(6):585-595.
|
[36] |
Wang J,Cao H,Wang H,et al.Multiple mechanisms involved in diabetes protection by lipopolysaccharide in non-obese diabetic mice[J].Toxicol Appl Pharmacol,2015,285(3):149-158.
|
[37] |
Gianchecchi E, Fierabracci A. On the pathogenesis of insulin-dependent diabetes mellitus:the role of microbiota[J].Immunol Res,2017,65(1):242-256.
|
[38] |
Shintani S,Satoh J,Seino H,et al.Mechanism of action of a streptococcal preparation(OK-432)in prevention of autoimmune diabetes in NOD mice.Suppression of generation of effector cells for pancreatic B cell destruction[J].J Immunol,1990,144(1):136-141.
|
[39] |
Burrows MP,Volchkov P,Kobayashi KS,et al.Microbiota regulates type 1 diabetes through Toll-like receptors[J].Proc Natl Acad Sci U S A,2015,112(32):9973-9977.
|
[40] |
Quintana FJ,Rotem A,Carmi P,et al.Vaccination with empty plasmid DNA or CpG oligonucleotide inhibits diabetes in nonobese diabetic mice:modulation of spontaneous 60-kDa heat shock protein autoimmunity[J].J Immunol,2000,165(11):6148-6155.
|
[41] |
Lee BJ,Kim SK,Kim MK,et al.Limited effect of CpG ODN in preventing type 1 diabetes in NOD mice[J].Yonsei Med J,2005,46(3):341-346.
|
[42] |
Husseiny MI,Rawson J,Kaye A,et al.An oral vaccine for type 1 diabetes based on live attenuated Salmonella[J].Vaccine,2014,32(20):2300-2307.
|
[43] |
Duan FF, Liu JH, March JC. Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes[J].Diabetes,2015,64(5):1794-1803.
|
[44] |
Robert S,Gysemans C,Takiishi T,et al.Oral delivery of glutamic acid decarboxylase(GAD)-65 and IL10 by Lactococcus lactis reverses diabetes in recent-onset NOD mice[J].Diabetes,2014,63(8):2876-2887.
|
[45] |
Saxena A, Yagita H, Donner TW, et al. Expansion of FasL-expressing CD5+ B cells in type 1 diabetes patients[J].Front Immunol,2017,8(3):402.
|
[46] |
Osińska I,Popko K,Demkow U.Perforin:an important player in immune response[J].Cent Eur J Immunol,2014,39(1):109-115.
|
[47] |
Klocke K,Sakaguchi S,Holmdahl R,et al.Induction of autoimmune disease by deletion of CTLA-4 in mice in adulthood[J].Proc Natl Acad Sci U S A,2016,113(17):E2383-E2392.
|
[48] |
Bednar KJ, Tsukamoto H, Kachapati K, et al. Reversal of new-onset type 1 diabetes with an agonistic TLR4/MD-2 monoclonal antibody[J].Diabetes,2015,64(10):3614-3626.
|
[49] |
Mellati M,Eaton KD,Brooks-Worrell BM,et al.Anti-PD-1 and Anti-PDL-1 monoclonal antibodies causing type 1 diabetes[J].Diabetes Care,2015,38(9):e137.
|
[1] | LOU Fangning, ZHENG Mingyue, CHEN Kaixian, ZHANG Sulin. Research progress of cGAS-STING signaling pathway modulators in immunotherapy[J]. Journal of China Pharmaceutical University, 2024, 55(1): 15-25. DOI: 10.11665/j.issn.1000-5048.2023112402 |
[2] | WU Congyu, ZHOU Yue, SHANGGUAN Luxi, YANG Yani, WANG Jingya, YU Junhe, GONG Shuaishuai, KOU Junping. Progress of research on the pharmacological effects and mechanisms of emodin[J]. Journal of China Pharmaceutical University, 2023, 54(5): 634-643. DOI: 10.11665/j.issn.1000-5048.2023052501 |
[3] | ZHANG Yuxin, DING Ming, LIU Jun. Research progress of proximity labeling technology based on biotin ligase in proteomics[J]. Journal of China Pharmaceutical University, 2022, 53(1): 18-24. DOI: 10.11665/j.issn.1000-5048.20220103 |
[4] | LIU Yuhong, ZHANG Fangfang, LIU Jianxing, LIU Yue, YANG Yue, JIN Liang. Interplay between non-coding RNA and insulin signaling pathway and its clinical application[J]. Journal of China Pharmaceutical University, 2021, 52(3): 279-286. DOI: 10.11665/j.issn.1000-5048.20210303 |
[5] | TANG Keqin, LIN Huaqing, LI Shuhong, DONG Lixin, LU Bohong, JIANG Hong. Advances in tumor targeted nanocrystals[J]. Journal of China Pharmaceutical University, 2020, 51(4): 418-424. DOI: 10.11665/j.issn.1000-5048.20200405 |
[6] | LIU Li, ZHANG Qianwen, NONG Cheng, ZHANG Xi, XU Xiaoting, Mohammed Ismail, XIAO Li, JIANG Zhenzhou, ZHANG Luyong, SUN Lixin. Research progress of lncRNA regulating signal transduction pathway in liver diseases[J]. Journal of China Pharmaceutical University, 2020, 51(3): 277-286. DOI: 10.11665/j.issn.1000-5048.20200304 |
[7] | MEI Jiahao, HONG Ze, WANG Chen. Advances of drugs in targeting cGAS-STING signaling pathway[J]. Journal of China Pharmaceutical University, 2020, 51(3): 249-259. DOI: 10.11665/j.issn.1000-5048.20200301 |
[8] | XU Han, ZHANG Yuanyuan, KOU Junping. Advances in drug-induced gastrointestinal bleeding and its pathological mechanism[J]. Journal of China Pharmaceutical University, 2019, 50(6): 659-665. DOI: 10.11665/j.issn.1000-5048.20190604 |
[9] | WANG Xue, ZHANG Pinghu. Advances in research on the modulation of autophagy by Ras/Raf/MEK/ERK signaling pathway[J]. Journal of China Pharmaceutical University, 2017, 48(1): 110-116. DOI: 10.11665/j.issn.1000-5048.20170117 |
[10] | HUANG Shaoliang, ZHAO Li, GUO Qinglong, WU Yulin. Advances of Hedgehog pathway in tumor resistance[J]. Journal of China Pharmaceutical University, 2016, 47(3): 259-266. DOI: 10.11665/j.issn.1000-5048.20160302 |