Citation: | CHEN Suting, CHEN Song, GAO Xiangdong. Construction, expression, purification and neuroprotective activity of TAT-FGF21 fusion protein[J]. Journal of China Pharmaceutical University, 2018, 49(4): 496-501. DOI: 10.11665/j.issn.1000-5048.20180417 |
[1] |
Kharitonenkov A, Adams AC. Inventing new medicines: the FGF21 story[J].Mol Metab,2014,3(3):221-229.
|
[2] |
Degirolamo C,Sabba C,Moschetta A.Therapeutic potential of the endocrine fibroblast growth factors FGF19,FGF21 and FGF23[J].Nat Rev Drug Discov,2015,15(1):51-69.
|
[3] |
Bookout AL, De Groot MH, Owen BM, et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system[J].Nat Med,2013,19(9):1147-1152.
|
[4] |
Sa-Nguanmoo P,Chattipakorn N,Chattipakorn SC.Potential roles of fibroblast growth factor 21 in the brain[J].Metab Brain Dis,2016,31(2):239-248.
|
[5] |
Hsuchou H,Pan W,Kastin AJ.The fasting polypeptide FGF21 can enter brain from blood[J].Peptides,2007,28(12):2382-2386.
|
[6] |
Kristensen M,Birch D,Nielsen HM.Applications and challenges for use of cell-penetrating peptides as delivery vectors for peptide and protein cargos[J].Int J Mol Sci,2016,17(2):185.
|
[7] |
El-S K,Morishita M,Kamei N,et al.Efficiency of cell-penetrating peptides on the nasal and intestinal absorption of therapeutic peptides and proteins[J].Int J Pharm,2009,381(1):49-55.
|
[8] |
Kamei N,Takeda-Morishita M.Brain delivery of insulin boosted by intranasal coadministration with cell-penetrating peptides[J].J Control Release,2015,197:105-110.
|
[9] |
Rizzuti M,Nizzardo M,Zanetta C,et al.Therapeutic applications of the cell-penetrating HIV-1 Tat peptide[J].Drug Discov Today,2015,20(1):76-85.
|
[10] |
Meloni BP,Milani D,Edwards AB,et al.Neuroprotective peptides fused to arginine-rich cell penetrating peptides:neuroprotective mechanism likely mediated by peptide endocytic properties[J].Pharmacol Ther,2015,153:36-54.
|
[11] |
Herce HD,Garcia AE,Litt J,et al.Arginine-rich peptides destabilize the plasma membrane,consistent with a pore formation translocation mechanism of cell-penetrating peptides[J].Biophys J,2009,97(7):1917-1925.
|
[12] |
Yin W,Cao G,Johnnides MJ,et al.TAT-mediated delivery of Bcl-xL protein is neuroprotective against neonatal hypoxic-ischemic brain injury via inhibition of caspases and AIF[J].Neurobiol Dis,2006,21(2):358-371.
|
[13] |
Namikoshi A,Wu JL,Yamashita T,et al.Vaccination trials with Penaeus japonicus to induce resistance to white spot syndrome virus[J].Aquaculture,2004,229(1/2/3/4):25-35.
|
[14] |
Yu HY,Chen S,Xu Z,et al.Protective effect of fibroin peptides on Aβ25-35-induced injury in SH-SY5Y cells and its mechanism[J].J China Pharm Univ,2017,48(5):609-613.
|
[15] |
Ishii M,Iadecola C.Metabolic and non-cognitive manifestations of Alzheimer′s disease:the hypothalamus as both culprit and target of pathology[J].Cell Metab,2015,22(5):761-776.
|
[16] |
Higuchi M,Maeda J,Ji B,et al.In-vivovisualization of key molecular processes involved in Alzheimer′s disease pathogenesis:Insights from neuroimaging research in humans and rodent models[J].BBA-Mol Basis Dis,2010,1802(4):373-388.
|
[17] |
Anand A,Patience AA,Sharma N,et al.The present and future of pharmacotherapy of Alzheimer′s disease:a comprehensive review[J].Eur J Pharmacol,2017,815:364-375.
|
[18] |
Guo JJ,Liao H.Development of drug for Alzheimer′s disease[J].J China Pharm Univ(中国药科大学学报),2010,41(5):395-400.
|
[19] |
Sanguanmoo P,Tanajak P,Kerdphoo S,et al.FGF21 improves cognition by restored synaptic plasticity,dendritic spine density,brain mitochondrial function and cell apoptosis in obese-insulin resistant male rats[J].Horm Behav,2016,85:86-95.
|
[20] |
Mariani E,Polidori MC,Cherubini A,et al.Oxidative stress in brain aging,neurodegenerative and vascular diseases:an overview[J].J Chromatogr B,2005,827(1):65-75.
|
[21] |
Bhat AH,Dar KB,Anees S,et al.Oxidative stress,mitochondrial dysfunction and neurodegenerative diseases:a mechanistic insight[J].Biomed Pharmacother,2015,74:101-110.
|