Citation: | QIN Hongkun, GUI Yanping, WANG Yajing, ZHAO Li. Advances of Connexin 43-mediated glioma temozolomide resistance[J]. Journal of China Pharmaceutical University, 2018, 49(6): 646-652. DOI: 10.11665/j.issn.1000-5048.20180602 |
[1] |
Chen W,Zheng R,Baade PD,et al.Cancer statistics in China,2015[J].CA Cancer J Clin,2016,66(2):115-132.
|
[2] |
Gallego O.Nonsurgical treatment of recurrent glioblastoma[J].Curr Oncol,2015,22(4):e273-281.
|
[3] |
Wang X,Chen JX,Liu JP,et al.Gain of function of mutant TP53 in glioblastoma:prognosis and response to temozolomide[J].Ann Surg Oncol,2014,21(4):1337-1344.
|
[4] |
Stupp R,Mason WP,Van DB,Martin J,et al.Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma[J].N Engl J Med,2008,2(10):421-422.
|
[5] |
Cavaliere R,Wen PY,Schiff D.Novel therapies for malignant gliomas[J].Neurol Clin,2007,25(4):1141-1171.
|
[6] |
Chen Q,Boire A,Jin X,et al.Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer[J].Nature,2016,533(7604):493-498.
|
[7] |
Aasen T,Mesnil M,Naus CC,et al.Gap junctions and cancer:communicating for 50 years[J].Nat Rev Cancer,2016,16(12):775-788.
|
[8] |
Maeda S,Nakagawa S,Suga M,et al.Structure of the human connexin 26 Gap junction channel[J].Nature,2009,458(7238):597-602.
|
[9] |
Solan JL,Lampe PD.Specific Cx43 phosphorylation events regulate gap junction turnover in vivo[J].FEBS Lett,2014,588(8):1423-1429.
|
[10] |
Desplantez T, Verma V, Leybaert L, et al. Gap26,a connexin mimetic peptide,inhibits currents carried by Connexin 43 hemichannels and gap junction channels[J].Pharmacol Res,2012,65(5):546-552.
|
[11] |
Iyyathurai J,Wang N,D′hondt C,et al.The SH3-binding domain of Cx43 participates in loop/tail interactions critical for Cx43-hemichannel activity[J].Cell Mol Life Sci,2017,75(1):1-15.
|
[12] |
Khan Z,Yaiw K-C,Wilhelmi V,et al.Human cytomegalovirus immediate early proteins promote degradation of Connexin 43 and disrupt gap junction communication:implications for a role in gliomagenesis[J].Carcinogenesis,2013,35(1):145-154.
|
[13] |
Sin W,Aftab Q,Bechberger J,et al.Astrocytes promote glioma invasion via the gap junction protein Connexin 43[J].Oncogene,2016,35(12):1504-1516.
|
[14] |
Aasen T.Connexins:junctional and non-junctional modulators of proliferation[J].Cell Tissue Res,2015,360(3):685-699.
|
[15] |
Gielen PR,Aftab Q,Ma N,et al.Connexin 43 confers Temozolomide resistance in human glioma cells by modulating the mitochondrial apoptosis pathway[J].Neuropharmacology,2013,75(12):539-548.
|
[16] |
Crespin S,Fromont G,Wager M,et al.Expression of a gap junction protein,Connexin 43,in a large panel of human gliomas:new insights[J].Cancer Med,2016,5(8):1742-1752.
|
[17] |
Caltabiano R,Torrisi A,Condorelli D,et al.High levels of Connexin 43 mRNA in high grade astrocytomas.Study of 32 cases with in situ hybridization[J].Acta Histochem,2010,112(6):529-535.
|
[18] |
Hegi ME,Diserens A-C,Gorlia T,et al.MGMT gene silencing and benefit from temozolomide in glioblastoma[J].N Engl J Med,2005,352(10):997-1003.
|
[19] |
S Srivenugopal K,Rawat A,K Niture S,et al.Posttranslational regulation of O6-methylguanine-DNA methyltransferase(MGMT)and new opportunities for treatment of brain cancers[J].Mini Rev Med Chem,2016,16(6):455-464.
|
[20] |
Molenaar RJ,Verbaan D,Lamba S,et al.The combination of IDH1 mutations and MGMT methylation status predicts survival in glioblastoma better than either IDH1 or MGMT alone[J].Neuro Oncol,2014,16(9):1263-1273.
|
[21] |
Brandes AA,Franceschi E,Tosoni A,et al.MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients[J].J Clin Oncol,2008,26(13):2192-2197.
|
[22] |
Hirohata T,Asano K,Ogawa Y,et al.DNA mismatch repair protein(MSH6)correlated with the responses of atypical pituitary adenomas and pituitary carcinomas to temozolomide:the national cooperative study by the Japan Society for Hypothalamic and Pituitary Tumors[J].J Clin Endocr Metab,2013,98(3):1130-1136.
|
[23] |
Van Thuijl HF, Mazor T, Johnson BE, et al. Evolution of DNA repair defects during malignant progression of low-grade gliomas after temozolomide treatment[J].Acta Neuropathol,2015,129(4):597-607.
|
[24] |
Boccard SG,Marand SV,Geraci S,et al.Inhibition of DNA-repair genes Ercc1 and Mgmt enhances temozolomide efficacy in gliomas treatment:a pre-clinical study[J].Oncotarget,2015,6(30):29456-29468.
|
[25] |
Pasqualetti F,Gonnelli A,Cantarella M,et al.Association of glutathione S-transferase P-1(GSTP-1)rs1695 polymorphism with overall survival in glioblastoma patients treated with combined radio-chemotherapy[J].Invest New Drugs,2018,36(2):340-345.
|
[26] |
Wu C-P,Ambudkar SV.The pharmacological impact of ATP-binding cassette drug transporters on vemurafenib-based therapy[J].Acta Pharm Sin B,2014,4(2):105-111.
|
[27] |
Schaich M,Kestel L,Pfirrmann M,et al.A MDR1(ABCB1)gene single nucleotide polymorphism predicts outcome of temozolomide treatment in glioblastoma patients[J].Ann Oncol,2008,20(1):175-181.
|
[28] |
Munoz JL,Walker ND,Scotto KW,et al.Temozolomide competes for P-glycoprotein and contributes to chemoresistance in glioblastoma cells[J].Cancer Lett,2015,367(1):69-75.
|
[29] |
He J, Liu C, Wang B, et al. HMGN5 blockade by siRNA enhances apoptosis,suppresses invasion and increases chemosensitivity to temozolomide in meningiomas[J].Int J Oncol,2015,47(4):1503-1511.
|
[30] |
Moiseeva N,Susova OY,Mitrofanov A,et al.Connection between proliferation rate and temozolomide sensitivity of primary glioblastoma cell culture and expression of YB-1 and LRP/MVP[J].Biochemistry(Mosc),2016,81(6):628-635.
|
[31] |
Lin F,De Gooijer MC,Roig EM,et al.ABCB1,ABCG2 and PTEN determine the response of glioblastoma to temozolomide and ABT-888 therapy[J].Clin Cancer Res,2014,20(10):2703-2713.
|
[32] |
Klionsky DJ,Abdelmohsen K,Abe A,et al.Guidelines for the use and interpretation of assays for monitoring autophagy[J].Autophagy,2016,12(1):1-222.
|
[33] |
Ciechomska I,Gabrusiewicz K,Szczepankiewicz A,et al.Endoplasmic reticulum stress triggers autophagy in malignant glioma cells undergoing cyclosporine a-induced cell death[J].Oncogene,2013,32(12):1518-1529.
|
[34] |
Knizhnik AV,Roos WP,Nikolova T,et al.Survival and death strategies in glioma cells:autophagy,senescence and apoptosis triggered by a single type of temozolomide-induced DNA damage[J].PLoS One,2013,8(1):e55665.
|
[35] |
Galluzzi L, Bravo-San Pedro JM, Demaria S, et al. Activating autophagy to potentiate immunogenic chemotherapy and radiation therapy[J].Nat Rev Clin Oncol,2017,14(4):247-258.
|
[36] |
Golden EB, Cho HY, Jahanian A, et al. Chloroquine enhances temozolomide cytotoxicity in malignant gliomas by blocking autophagy[J].Neurosurg Focus,2014,37(6):E12.
|
[37] |
Lee SW,Kim HK,Lee NH,et al.The synergistic effect of combination temozolomide and chloroquine treatment is dependent on autophagy formation and p53 status in glioma cells[J].Cancer Lett,2015,360(2):195-204.
|
[38] |
Hori YS,Hosoda R,Akiyama Y,et al.Chloroquine potentiates temozolomide cytotoxicity by inhibiting mitochondrial autophagy in glioma cells[J].J Neurooncol,2015,122(1):11-20.
|
[39] |
U.S.National library of medicine.International Cooperative Phase III trial of the HIT-HGG study group(HIT-HGG-2013)[EB/OL].(2018-08-08)[2018-09-20] .https://Clinical Trials.gov/show/NCT03243461.
|
[40] |
U.S.National Library of Medicine.The Addition of Chloroquine to Chemoradiation for Glioblastoma[EB/OL].(2018-03-21)[2018-09-20] .https://ClinicalTrials.gov/show/NCT02432417.
|
[41] |
Lu J,Yu M,Lin Z,et al.Effects of Connexin 43 overexpression on U251 cell growth,migration,and apoptosis[J].Med Sci Mon Int Med J Exp Clin Res,2017,23:2917-2923.
|
[42] |
Munoz JL, Rodriguez-Cruz V, Greco SJ, et al. Temozolomide resistance in glioblastoma cells occurs partly through epidermal growth factor receptor-mediated induction of Connexin 43[J].Cell Death Dis,2014,5(3):e1145.
|
[43] |
Beahm DL,Oshima A,Gaietta G汍猬?睩椾瑥桴漠畡瑬?愯汩琾攮牍極湴条?杩慯灮?橯畦渠捡琠楣潯湮慳汥?捶潥浤洠畴湨楲捥慯瑮楩潮湥?楩湮?慴獨瑥爠潴捨祩瑲敤猠孴?嵡??業??牢潲湡瑮??敨汥汬?乸攠畯牦漠玱挠楡??椠???は????扩????扲???づ???戠牤??孩??嵮??奮略?????潥渠杣?卯女?奤甠????楪??散瑴?慯汮???楡?呮潥瑬慛汊?昮氼慩瘾潊渠潂楩摯獬?潃晨?汭椼琯獩放愬′挰漰爵攬愼湢愾′攸渱格愯湢挾攨?琲栩攺?挹礹琴漭琸漰砰椹挮椼瑢祲?漾晛?漴硝愠氠楃灡汯愠瑙椬湌?戠祔?楐湡据爠敘愼獩椾測来?朠慡灬?樼甯湩挾瑃楯潲湲?楬湡瑴敩牯据攠汯汦甠汥慸牰?捥潳浳浩畯湮椠捯慦琠楣潯湮孮?嵸??椠??椠潧汲?偷桴慨爠浡??甠汰汲??楲???ど????扦?????扩?????????????㈠??戾物??孳??嵵???椾??慝献椼????敩扮漠晊映敃????敲??慩爾椬渲椰猰‵??楢??攴琼?慢氾???椺?制攷琭椵渷漲椮挼?慲振椾摛?爵敝挠攠灙瑵潬特獡?晡爠潙洬?浮潤污敹捡甠求慂爬?浧攠捗案愼湩椾猬浥獴?瑡潬?挼愯湩挾敃牡?瑢桥敮牯慸灯祬孯?嵥??楮??潮汣??猠灔敒捁瑉獌??敮摤??楥???ば????扳??ㄠ??扲????ㄠ????扵牰??孧??嵡??坯慮渠杯?夠?坥慡湴杨?兲?婣桥慰湴杯?匠?椠??敤琠?慮汨???楴??慮椠捯慦氠敇楡湰?楪湵据牣整慩獯敮猠?瑮桴敥?捣祥瑬潬瑵潬硡楲挠楣瑯祭?潵普?捣楡獴灩汯慮琠楩湮?扨祵?敡湮栠慧湬捩楯湭条?杊慝瀮?橩甾湓捴瑥業漠湃?楬湬瑳攠牄捥敶氼氯畩氾愬爲‰挱漳洬洼畢渾椲挲愼琯楢漾渨嬱?崩??椸??漭氱??攲搮?剢敲瀯漾牛琴??椠???ぬ????戠??ぅ??扡??ㄠ???????????戬牥??孡??崼???潃湡歲汢楥湮?????敮捥栠扥敮牨条敮牣?????慁捉晌愭扩敮???楥??敡瑰?慰汴???楳??敨湲楯獵瑧敨椠湴?慥渠摵?煲略敧牵捬敡瑴楩湯?椠湯捦爠敤慥獡整?挠潲湥湣敥硰楴湯????慡湮摤?獩畮灨灩牢敩獴獩?杮爠潯睦琠桧?潰映?扵牮散慴獩瑯?挠慩湮捴敥牲?捥敬汬汵獬孡?崠??業??慮物捣楡湴潩杯敮渠敩獮椠獨??楡???ぬど???扛?????戾?????????び???扶爼??嬾??崰?″?攼牢渾稲眲攼椯杢 ̄??″?攺椱游椷朰攭爱????值牢慲猯愾楛渴???椠???攠瑓?愬汈???楧???測瑌楩?戠牙敓愼獩琾?捥慴渠捡敬爮?愯杩放湄瑩獦?煥畲楥湮潴汩楡湬攠獣?瑡慲牡杣整瑥楲湩杺?杴慩灯?樠畯湦挠瑴楥潭湯孺?嵬??楩??攭摲??桩敳浴??楴???ね????扬????戠?????????????nt J Mol Sci,2018,19(1):127.
|
[44] |
Murphy SF,Varghese RT,Lamouille S,et al.Connexin 43 inhibition sensitizes chemoresistant glioblastoma cells to temozolomide[J].Cancer Res,2016,76(1):139-149.
|
[45] |
Quail DF,Joyce JA.The microenvironmental landscape of brain tumors[J].Cancer Cell,2017,31(3):326-341.
|
[46] |
Herculano‐Houzel S.The glia/neuron ratio:how it varies uniformly across brain structures and species and what that means for brain physiology and evolution[J].Glia,2014,62(9):1377-1391.
|
[47] |
Iadecola C,Nedergaard M.Glial regulation of the cerebral microvasculature[J].Nat Neurosci,2007,10(11):1369-1376.
|
[48] |
Bazargani N,Attwell D.Astrocyte calcium signaling:the third wave[J].Nat Neurosci,2016,19(2):182-189.
|
[49] |
Pekny M,Nilsson M.Astrocyte activation and reactive gliosis[J].Glia,2005,50(4):427-434.
|
[50] |
Liddelow SA,Barres BA.Reactive astrocytes:production,function,and therapeutic potential[J].Immunity,2017,46(6):957-967.
|
[51] |
Sofroniew MV.Reactive astrocytes in neural repair and protection[J].Neuroscientist,2005,11(5):400-407.
|
[52] |
Lin Q,Balasubramanian K,Fan D,et al.Reactive astrocytes protect melanoma cells from chemotherapy by sequestering intracellular calcium through gap junction communication channels[J].Neoplasia,2010,12(9):748-754.
|
[53] |
Li J, Zhang N, Song LB, et al. Astrocyte elevated gene-1 is a novel prognostic marker for breast cancer progression and overall patient survival[J].Clin Cancer Res,2008,14(11):3319-3326.
|
[54] |
Yu T,Wang X,Zhi T,et al.Delivery of MGMT mRNA to glioma cells by reactive astrocyte-derived exosomes confers a temozolomide resistance phenotype[J].Cancer Lett,2018,433:210-220.
|
[55] |
Yang N,Yan T,Zhu H,et al.A co-culture model with brain tumor-specific bioluminescence demonstrates astrocyte-induced drug resistance in glioblastoma[J].J Transl Med,2014,12(1):1-9.
|
[56] |
Lin Q,Liu Z,Ling F,et al.Astrocytes protect glioma cells from chemotherapy and upregulate survival genes via gap junctional communication[J].Mol Med Report,2016,13(2):1329-1335.
|
[57] |
Sforna L,Cenciarini M,Belia S,et al.The role of ion channels in the hypoxia-induced aggressiveness of glioblastoma[J].Front Cell Neurosci,2015,8:467.
|
[58] |
Chen W,Wang D,Du X,et al.Glioma cells escaped from cytotoxicity of temozolomide and vincristine by communicating with human astrocytes[J].Med Oncol,2015,32(3):43.
|
[59] |
Hong X,Sin WC,Harris AL,et al.Gap junctions modulate glioma invasion by direct transfer of microRNA[J].Oncotarget,2015,6(17):15566-15577.
|
[60] |
Ismail FS, Moinfar Z, Prochnow N, et al. Dexamethasone and levetiracetam reduce hetero-cellular gap-junctional coupling between F98 glioma cells and glial cells in vitro[J].J Neurooncol,2017,131(3):469-476.
|
[61] |
Matias D,Predes D,Niemeyer Filho P,et al.Microglia-glioblastoma interactions:new role for Wnt signaling[J].BBA-Rev Cancer,2017,1868(1):333-340.
|
[62] |
Quail DF,Bowman RL,Akkari L,et al.The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas[J].Science,2016,352(6288):aad3018.
|
[63] |
Garg AD,Vandenberk L,Koks C,et al.Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of high-grade glioma[J].Sci Transl Med,2016,8(328):328ra327.
|
[64] |
Leshchenko Y,Likhodii S,Yue W,et al.Carbenoxolone does not cross the blood brain barrier:an HPLC study[J].BMC Neurosci,2006,7(1):3.
|
[65] |
Chekhonin VP,Baklaushev VP,Yusubalieva GM,et al.Targeted delivery of liposomal nanocontainers to the peritumoral zone of glioma by means of monoclonal antibodies against GFAP and the extracellular loop of Cx43[J].Nanomed-Nanotechnol,2012,8(1):63-70.
|
[66] |
Yusubalieva G,Baklaushev V,Gurina O,et al.Treatment of poorly differentiated glioma using a combination of monoclonal antibodies to extracellular connexin-43 fragment,temozolomide,and radiotherapy[J].Bull Exp Biol Med,2014,157(4):510-515.
|
[67] |
Wang J,Yang ZY,Guo YF,et al.Targeting different domains of gap junction protein to control malignant glioma[J].Neuro Oncol,2017,20(7):885-896.
|
[68] |
Li M,Liang RF,Wang X,et al.BKM120 sensitizes C6 glioma cells to temozolomide via suppression of the PI3K/Akt/NF-κB/MGMT signaling pathway[J].Oncol Lett,2017,14(6):6597-6603.
|
[69] |
Ponsaerts R,De Vuyst E,Retamal M,et al.Intramolecular loop/tail interactions are essential for connexin 43-hemichannel activity[J].FASEB J,2010,24(11):4378-4395.
|
[70] |
Abudara V,Bechberger J,Freitas-Andrade M,et al.The connexin 43 mimetic peptide Gap19 inhibits hemichanne
|
[1] | XIA Ying, GUO Hongli, HU Yahui, CHEN Feng. Therapeutic drug monitoring for monoclonal antibody:progress in the application of LC-MS/MS technique[J]. Journal of China Pharmaceutical University, 2021, 52(1): 122-128. DOI: 10.11665/j.issn.1000-5048.20210117 |
[2] | JI Shunli, SONG Fanfan, ZHENG Yang, DING Li. Simultaneous determination of amoxicillin and clavulanic acid by LC-MS/MS in human plasma and its application to a bioequivalence study[J]. Journal of China Pharmaceutical University, 2019, 50(6): 699-706. DOI: 10.11665/j.issn.1000-5048.20190610 |
[3] | LIANG Feng, LI Duo, WANG Rongbin, SHU Chang, DING Li. Pharmacokinetics and absolute bioavailability of isoschaftoside in rat by LC-MS/MS[J]. Journal of China Pharmaceutical University, 2019, 50(1): 75-80. DOI: 10.11665/j.issn.1000-5048.20190110 |
[4] | LIU Chaoyi, ZHANG Ge, HANG Taijun, WANG Lei, ZHANG Xiaofei, SONG Min. Identification of related substances in rivaroxaban by LC-MS[J]. Journal of China Pharmaceutical University, 2015, 46(4): 450-457. DOI: 10.11665/j.issn.1000-5048.20150411 |
[5] | LI Jingjing, TAN Jingfu, YANG Jie, WANG Qiang. Pharmacokinetic study of corosolic acid in normal rats and diabetic rats by LC-MS[J]. Journal of China Pharmaceutical University, 2014, 45(1): 84-87. DOI: 10.11665/j.issn.1000-5048.20140115 |
[6] | YANG Youtian, MAO Baiyang, CHENG Lifei, SU Mengxiang, DI Bin. Identification of the related substances in telmisartan/amlodipine double layer tablets by LC-MS/MS[J]. Journal of China Pharmaceutical University, 2014, 45(1): 65-69. DOI: 10.11665/j.issn.1000-5048.20140111 |
[7] | MU Yanan, YANG Jin. Determination of epothilone B in human blood by LC-MS/MS and its application in phase I pharmacokinetics study[J]. Journal of China Pharmaceutical University, 2013, 44(1): 89-92. DOI: 10.11665/j.issn.1000-5048.20130115 |
[8] | SI Qian, CHEN Yuan-cheng, HUANG Li-hua, CHENG Yu, HE Hua, LIU Xiao-quan. Determination of nebivolol in human plasma by LC-MS/MS and study of its pharmacokinetics on the Chinese[J]. Journal of China Pharmaceutical University, 2011, 42(2): 136-140. |
[9] | Determination of Ranolazine and Its Pharmacokinetics in Dog by LC-MS[J]. Journal of China Pharmaceutical University, 2004, (2): 59-62. |
[10] | Determination of Clarithromycin in Human Plasma by LC-MS Method[J]. Journal of China Pharmaceutical University, 2004, (1): 52-55. |