Citation: | TIAN Jiping, ZHANG Jian, ZHOU Jinpei, ZHANG Huibin. Advances in small molecule inhibitors of PD-1/PD-L1 immune checkpoint pathway[J]. Journal of China Pharmaceutical University, 2019, 50(1): 1-10. DOI: 10.11665/j.issn.1000-5048.20190101 |
[1] |
Sharma P,Allison JP.The future of immune checkpoint therapy[J].Science,2015,348(6230):56-61.
|
[2] |
Hwang SJ, Carlos G, Chou S, et al. Bullous pemphigoid, an autoantibody-mediated disease,is a novel immune-related adverse event in patients treated with anti-programmed cell death 1 antibodies[J].Melanoma Res,2016,26(4):413-416.
|
[3] |
Naidoo J,Page DB,Li BT,et al.Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies[J].Ann Oncol,2015,26(12):2375-2391.
|
[4] |
Ishida Y,Agata Y,Shibahara K,et al.Induced expression of PD-1,a novel member of the immunoglobulin gene superfamily,upon programmed cell death[J].Embo Journal,1992,11(11):3887-3895.
|
[5] |
Pan JJ,Jia XQ,Huang G,et al.PD-1/PD-Ls signaling pathway and the application of anti-PD-1/PD-Ls antibodies in cancer therapy[J].J China Pharm Univ(中国药科大学学报),2016,47(1):9-18.
|
[6] |
Longo DL,Boussiotis VA.Molecular and biochemical aspects of the PD-1 checkpoint pathway[J].New Engl J Med,2016,375(18):1767-1778.
|
[7] |
Okazaki T,Honjo T.PD-1 and PD-1 ligands:from discovery to clinical application[J].Int Immunol,2007,19(7):813-824.
|
[8] |
Chen L.Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity[J].Nat Rev Immunol,2004,4(5):336-347.
|
[9] |
Intlekofer AM,Thompson CB.At the bench:preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy[J].J Leukoc Biol,2013,94(1):25-39.
|
[10] |
Chemnitz JM, Parry RV, Nichols KE, et al. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation,but only receptor ligation prevents T cell activation[J].J Immunol,2004,173(2):945-954.
|
[11] |
Sharpe AH,Pauken KE.The diverse functions of the PD1 inhibitory pathway[J].Nat Rev Immunol,2017,18(3):153-167.
|
[12] |
Hui E,Cheung J,Zhu J,et al.T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition[J].Science,2017,355(6332):1428-1433.
|
[13] |
Patsoukis N,Brown J,Petkova V,et al.Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation[J].Sci Signal,2012,5(230):ra46.
|
[14] |
Dong H,Strome SE,Salomao DR,et al.Tumor-associated B7-H1 promotes T-cell apoptosis:a potential mechanism of immune evasion[J].Nat Med,2002,8(8):793-800.
|
[15] |
Fumihiko T,Sheng Y,Tahiro S,et al.Interaction between B7-H1 and PD-1 determines initiation and reversal of T-cell anergy[J].Blood,2007,110(1):180-185.
|
[16] |
Wherry EJ,Kurachi M.Molecular and cellular insights into T cell exhaustion[J].Nat Rev Immunol,2015,15(8):486-499.
|
[17] |
Monica VG,Charles HM,Edward LH,et al.Role of PD-1 and its ligand,B7-H1,in early fate decisions of CD8 T cells[J].Blood,2007,110(1):186-192.
|
[18] |
Francisco LM,Sage PT,Sharpe AH.The PD-1 pathway in tolerance and autoimmunity[J].Immunol Rev,2010,236(1):219-242.
|
[19] |
Liu J,Zhang S,Hu Y,et al.Targeting PD-1 and Tim-3 pathways to reverse CD8 T-cell exhaustion and enhance ex vivo T-cell responses to autologous dendritic/tumor vaccines[J].J Immunother,2016,39(4):171-181.
|
[20] |
Sasikumar PGN,Vadlamani SK,Vemula KR.Immunosuppression modulating compounds:US,0318373[P].2011-12-29.
|
[21] |
Sasikumar P,Shrimali R,Adurthi S,et al.A novel peptide therapeutic targeting PD1 immune checkpoint with equipotent antagonism of both ligands and a potential for better management of immune-related adverse events[J].J Immunother Cancer,2013,1(S1):O24.
|
[22] |
Sasikumar PGN,Ramachandra M,Vadlamani SK,et al,Immunosuppression modulating compounds:WO,2011161699A2[P].2011-12-29.
|
[23] |
Sasikumar PG,Satyam LK,Shrimali RK,et al.Abstract 2850:Demonstration of anti-tumor efficacy in multiple preclinical cancer models using a novel peptide inhibitor(Aurigene-012)of the PD1 signaling pathway[J].Cancer Res,2012,72(8 Supplement):2850-2850.
|
[24] |
Sasikumar PGN.Immunomodulating cyclic compounds:US,9422339[P].2016-08-23.
|
[25] |
Sasikumar PGN.Therapeutic immunomodulating compounds:WO,2015044900[P].2015-04-02.
|
[26] |
Sasikumar PGN.Cyclic Peptidomimetic compounds as immunomodulators:WO,2015033303[P].2015-03-12.
|
[27] |
Sasikumar PGN.Therapeutic cyclic compounds as immunomodulators:WO,2016142835[P].2016-09-15.
|
[28] |
Miller Michael Matthew.Macrocyclic inhibitors of the PD-1/PD-l1 and cd80(b7-1)/pd-l1 protein/protein interactions:US,20170260237[P].2017-09-14.
|
[29] |
Gillman,K.W.Macrocyclic peptides useful as immunomodulators:WO,2016077518[P].2016-05-19.
|
[30] |
Boy KM,Sun LQ.Immunomodulators:WO,2016149351[P].2016-09-22.
|
[31] |
Sun LQ,Zhao Q.Immunomodulators:WO,2016057624[P].2016-04-14.
|
[32] |
Sun LQ,Zhao Q.Immunomodulators:WO,2016126646[P].2016-08-11.
|
[33] |
Chang HN,Liu BY,Qi YK,et al.Blocking of the PD-1/PD-L1 interaction by a D-peptide antagonist for cancer immunotherapy[J].Angew Chem Int Edit,2015,127(40):11926-11930.
|
[34] |
Li C, Zhang N, Zhou J, et al. Peptide blocking of PD-1/PD-L1 interaction for cancer immunotherapy[J].Cancer Immunol Res,2017,6(2):178-188.
|
[35] |
Sharpe AH,Butte MJ,Oyama S.Modulators of immunoinhibitory receptor PD-1,and methods of use thereof:WO,2011082400[P].2011-07-07.
|
[36] |
Chupak LS,Zheng X.Compounds useful as immunomodulators:WO,2015034820A1[P].2015-03-12.
|
[37] |
Chupak LS,Ding M,Martin SW.Preparation of substituted 2,4-dihydroxybenzylamines as immunomodulators:WO,2015160641A2[P].2015-10-22.
|
[38] |
Yeung KS,Connolly TP.Compounds useful as immunomodulators:WO,2017066227[P].2017-04-20.
|
[39] |
Yeung KS,Katharine AGY,Zhu JL,et al.Compounds useful as immunomodulators:WO,2018044963A1[P].2018-03-08.
|
[40] |
Guzik K,Zak KM,Grudnik P,et al.Small-molecule inhibitors of the programmed cell death-1/programmed death-ligand 1(PD-1/PD-L1)interaction via transiently induced protein states and dimerization of PD-L1[J].J Med Chem,2017,60(13):5857-5867.
|
[41] |
Zak KM,Grudnik P,Guzik K,et al.Structural basis for small molecule targeting of the programmed death ligand 1(PD-L1)[J].Oncotarget,2016,7(21):30323-30335.
|
[42] |
Skalniak L,Zak KM,Guzik K,et al.Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells[J].Oncotarget,2017,8(42):72167-72181.
|
[43] |
Wang L,Wang H,Chen H,et al.Serum levels of soluble programmed death ligand 1 predict treatment response and progression free survival in multiple myeloma[J].Oncotarget,2015,6(38):41228-41236.
|
[44] |
Damotte D.High level of soluble programmed cell death ligand 1 in blood impacts overall survival in aggressive diffuse large B-Cell lymphoma:results from a French multicenter clinical trial[J].Leukemia,2014,28(12):2367-2375.
|
[45] |
Xavier F,Inman BA,Lohse CM,et al.Identification of a soluble form of B7-H1 that retains immunosuppressive activity and is associated with aggressive renal cell carcinoma[J].Clin Cancer Res,2011,17(7):1915-1923.
|
[46] |
Davies LC,Heldring N,Kadri N,et al.Mesenchymal stromal cell secretion of programmed death‐1 ligands regulates t cell mediated immunosuppression[J].Stem Cells,2017,35(3):766-776.
|
[47] |
Nagato T,Ohkuri T,Ohara K,et al.Programmed death-ligand 1 and its soluble form are highly expressed in nasal natural killer/T-cell lymphoma:a potential rationale for immunotherapy[J].Cancer Immunol Immun,2017,66(7):1-14.
|
[48] |
Saiya-Cork K,Collins R,Parkin B,et al.A pathobiological role of the insulin receptor in chronic lymphocytic leukemia[J].Clin Cancer Res,2011,17(9):2679-2692.
|
[49] |
Frigola X,Inman BA,Krco CJ,et al.Soluble B7-H1:differences in production between dendritic cells and T cells[J].Immunol Lett,2012,142(1/2):78-82.
|
[50] |
Feng Z,Chen X,Yang Y.Benzyl phenyl ether derivative preparation method therefor,and pharmaceutical composition and uses thereof:WO,2017202273[P].2017-11-30.
|
[51] |
Feng Z,Chen X,Yang Y.Bromo benzyl ether derivative preparation method therefor,and pharmaceutical composition and uses thereof:WO,2017202275[P].2017-11-30.
|
[52] |
Feng Z,Chen X,Yang Y.Phenylate derivative preparation method therefor,and pharmaceutical composition and uses thereof:WO,2017202276[P].2017-11-30.
|
[53] |
Wang Y,Xu Y,Zhang T,Aromatic acetylene or aromatic ethylene compound,intermediate,preparation method,pharmaceutical composition and use thereof:WO,2018006795[P].2017-11-30.
|
[54] |
Lajkiewicz N,Wu LX.Heterocyclic Compounds as immunomodulators:WO,2017112730[P].2017-06-29.
|
[55] |
Wu LX,Li JW.Benzooxazole Derivatives as immunomodulators:WO,2018119266[P].2018-06-28.
|
[56] |
Aktoudlanakls E,Appleby T,Aesop C,et al.PD-1/PD-L1 Inhibitors:WO,2018195321A1[P].2018-10-25.
|
[57] |
Sasikumar PGN, Ramachandra M. VISTA Signaling pathway inhibitory compounds useful as immunomodulators:WO,2018047143A1[P].2018-03-15.
|
[58] |
Carreterogonzález A, Lora D, Ghanem I, et al. Analysis of response rate with ANTI PD1/PD-L1 monoclonal antibodies in advanced solid tumors:a meta-analysis of randomized clinical trials[J].Oncotarget,2018,9(9):8706-8715.
|
[59] |
Guangzhou Dankang Pharmaceutical Biological Co.Ltd.Cyclic compound for inhibiting programmed death receptor ligand 1 and use thereof:CN,108395443.[P].2018-08-04.
|
[60] |
Nanjing Sanhome Pharmaceutical Co.Ltd.Heterocyclic compound serving as PD-L1 Inhibitor;WO,2018196768[P].2018-11-01.
|
1. |
郑吴淇,宁弘宇,陈昊,黄忠平,范一雷,柯星. 流动注射-串联质谱法分析污水中11种毒品. 分析试验室. 2024(05): 705-710 .
![]() | |
2. |
刘昕,王兵益,杨发震. 水环境毒品监测用于毒情评估的标准体系研究. 云南警官学院学报. 2023(04): 7-12 .
![]() | |
3. |
彭诗琪,赵嘉辉,赖华杰,桑柳波. 基于阳离子交换的固相萃取与液相色谱—串联质谱法联用分析污水中的17种非法药物. 化学研究与应用. 2023(08): 1956-1965 .
![]() | |
4. |
李雪蕾,袁健彪. 浅谈生活污水中毒品检测技术的分析和应用. 中国石油和化工标准与质量. 2022(04): 41-43 .
![]() | |
5. |
郭晶晶,陈丹萍,董露斌,杨飞,胡双英. SPE-HPLC-ESI-MS/MS检测污水中常见13种违禁药物的方法. 新型工业化. 2022(04): 51-54+58 .
![]() | |
6. |
王叶,徐磊,徐鹏,杭太俊,宋敏,王优美,徐慧. 污水中常见毒品的分析方法优化及验证. 中国药科大学学报. 2022(04): 467-472 .
![]() | |
7. |
李雪松. 生活污水中滥用药物检测技术的应用与分析. 生物化工. 2022(04): 58-61 .
![]() | |
8. |
王欢博,米兰,霍婷婷,唐恬,徐布一. 大气环境中毒品监测研究进展. 环境化学. 2022(09): 2974-2985 .
![]() | |
9. |
王平,刘晓云,郑振成,梁桂巧,赖胜强. 应用固相萃取-超高效液相色谱-串联质谱法同时检测城市污水中氟胺酮及2种位置异构体. 中国司法鉴定. 2022(05): 67-72 .
![]() | |
10. |
向平. 污水毒品监测技术:进展、挑战与展望. 中国司法鉴定. 2022(05): 17-21 .
![]() | |
11. |
丁艳,乔宏伟,陈捷,张婷婷,花镇东,杭太俊,刘培培. 在线固相萃取-超高效液相色谱-串联质谱法同时检测污水中氟胺酮等21种毒品及其代谢物. 中国司法鉴定. 2022(05): 39-50 .
![]() | |
12. |
赵明明,刘冬娴,伍岚,刘炜,贺江南,陈志伟,易荣楠. 固相萃取/液质联用法检测污水中14种毒品及代谢物. 中国给水排水. 2022(24): 133-138 .
![]() | |
13. |
王美丽,李敦毅. QuEChERS法提取-液相色谱-质谱法检测分析制药园区污水中青霉素、洁霉素、土霉素、四环素和庆大霉素残留方法的建立. 分析仪器. 2021(04): 150-154 .
![]() | |
14. |
Jingyuan Wang,Likai Qia,Chenzhi Hou,Tingting Zhang,Mengyi Chen,Haitao Meng,Mengxiang Su,Hui Xu,Zhendong Hua,Youmei Wang,Bin Di. Automatic analytical approach for the determination of 12 illicit drugs and nicotine metabolites in wastewater using on-line SPE-UHPLC-MS/MS. Journal of Pharmaceutical Analysis. 2021(06): 739-745 .
![]() |