• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
YUE Yali, YIN Jun, GAO Xiangdong, YAO Wenbing. Research advances of bispecific antibody drugs in tumor therapy[J]. Journal of China Pharmaceutical University, 2019, 50(3): 289-298. DOI: 10.11665/j.issn.1000-5048.20190304
Citation: YUE Yali, YIN Jun, GAO Xiangdong, YAO Wenbing. Research advances of bispecific antibody drugs in tumor therapy[J]. Journal of China Pharmaceutical University, 2019, 50(3): 289-298. DOI: 10.11665/j.issn.1000-5048.20190304

Research advances of bispecific antibody drugs in tumor therapy

More Information
  • Tumor immunotherapy is currently the new direction for the treatment of cancer. Bispecific antibody can bind two different antigens, so the development prospect in the field of tumor treatment is very attractive. The most compelling trifunctional antibody and bispecific T-cell engager in bispecific antibodies have been marketed separately, with representative drugs as catumaxomab and blinatumomab, respectively. So far, nearly 100 antitumor bispecific antibody drugs are undergoing clinical trials and in-depth understanding of their mechanisms of action will provide more powerful solutions for cancer treatment. This review summarizes the progress of catumaxomab, blinatumomab and current highly promising bispecific antibody drugs, for the further development and application of tumor therapy.
  • [1]
    de Almeida R,Nakamura CN,de Lima Fontes M,et al.Enhanced immunization techniques to obtain highly specific monoclonal antibodies[J].MAbs,2018,10(1):46-54.
    [2]
    Yu S,Li A,Liu Q,et al.Recent advances of bispecific antibodies in solid tumors[J].J Hematol Oncol,2017,10(1):155.
    [3]
    Sado Y,Inoue S,Tomono Y,et al.Monoclonal suncus antibodies:generation of fusion partners to produce suncus-suncus hybridomas[J].Acta Histochem Cytochem,2017,50(2):71-84.
    [4]
    Cymer F,Beck H,Rohde A,et al.Therapeutic monoclonal antibody N-glycosylation-Structure,function and therapeutic potential[J].Biologicals,2018,52:1-11.
    [5]
    Li XR,Liu R,Liu FK,et al.Culture process for fully human anti-VEGF165 monoclonal antibody[J].J China Pharm Univ(中国药科大学学报),2015,46(6):734-739.
    [6]
    Fan G, Wang Z, Hao M, et al. Bispecific antibodies and their applications[J].J Hematol Oncol,2015,8:130.
    [7]
    Brinkmann U,Kontermann RE.The making of bispecific antibodies[J].MAbs,2017,9(2):182-212.
    [8]
    Kontermann RE,Brinkmann U.Bispecific antibodies[J].Drug Discov Today,2015,20(7):838-847.
    [9]
    Trivedi A,Stienen S,Zhu M,et al.Clinical pharmacology and translational aspects of bispecific antibodies[J].Clin Transl Sci,2017,10(3):147-162.
    [10]
    Riesenberg R,Buchner A,Pohla H,et al.Lysis of prostate carcinoma cells by trifunctional bispecific antibodies(alpha EpCAM × alpha CD3)[J].J Histochem Cytochem,2001,49(7):911-917.
    [11]
    Sedykh SE,Prinz VV,Buneva VN,et al.Bispecific antibodies:design,therapy,perspectives[J].Drug Des Dev Ther,2018,12:195-208.
    [12]
    Kubo M,Umebayashi M,Kurata K,et al.Catumaxomab with activated T-cells efficiently lyses chemoresistant EpCAM-positive triple-negative breast cancer cell lines[J].Anticancer Res,2018,38(7):4273-4279.
    [13]
    Knödler M,Körfer J,Kunzmann V,et al.Randomised phase II trial to investigate catumaxomab(anti-EpCAM × anti-CD3)for treatment of peritoneal carcinomatosis in patients with gastric cancer[J].Br J Cancer,2018,119(3):296-302.
    [14]
    Ruf P,Lindhofer H.Induction of a long-lasting antitumor immunity by a trifunctional bispecific antibody[J].Blood,2001,98(8):2526-2534.
    [15]
    Heiss MM,Ströhlein MA,Jäger M,et al.Immunotherapy of malignant ascites with trifunctional antibodies[J].Int J Cancer,2005,117(3):435-443.
    [16]
    Burges A, Wimberger P, Kümper C, et al. Effective relief of malignant ascites in patients with advanced ovarian cancer by a trifunctional anti-EpCAM × anti-CD3 antibody:a phase I/II study[J].Clin Cancer Res,2007,13(13):3899-3905.
    [17]
    Heiss MM,Murawa P,Koralewski P,et al.The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer:results of a prospective randomized phase II/III trial[J].Int J Cancer,2010,127(9):2209-2221.
    [18]
    Goéré D,Flament C,Rusakiewicz S,et al.Potent immunomodulatory effects of the trifunctional antibody catumaxomab[J].Cancer Res,2013,73(15):4663-4673.
    [19]
    Mau-Sørensen M,Dittrich C,Dienstmann R,et al.A phase I trial of intravenous catumaxomab:a bispecific monoclonal antibody targeting EpCAM and the T cell coreceptor CD3[J].Cancer Chemother Pharmacol,2015,75(5):1065-1073.
    [20]
    Kantarjian H,Stein A,Gökbuget N,et al.Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia[J].N Engl J Med,2017,376(9):836-847.
    [21]
    Ribera JM.Efficacy and safety of bispecific T-cell engager blinatumomab and the potential to improve leukemia-free survival in B-cell acute lymphoblastic leukemia[J].Expert Rev Hematol,2017,10(12):1057-1067.
    [22]
    Dreier T,Lorenczewski G,Brandl C,et al.Extremely potent,rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody[J].Int J Cancer,2002,100(6):690-697.
    [23]
    Topp MS,Stelljes M,Zugmaier G,et al.Blinatumomab retreatment after relapse in patients with relapsed/refractory B-precursor acute lymphoblastic leukemia[J].Leukemia,2018,32(2):562-565.
    [24]
    Durer S,Durer C,Shafqat M,et al.Concomitant use of blinatumomab and donor lymphocyte infusion for mixed-phenotype acute leukemia:a case report with literature review[J].Immunotherapy,2019,11(5):373-378.
    [25]
    Bargou R,Leo E,Zugmaier G,et al.Tumor regression in cancer patients by very low doses of a T cell-engaging antibody[J].Science,2008,321(5891):974-977.
    [26]
    Topp MS,Kufer P,Gökbuget N,et al.Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival[J].J Clin Oncol,2011,29(18):2493-2498.
    [27]
    Topp MS, Gökbuget N, Zugmaier G, et al. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia[J].J Clin Oncol,2014,32(36):4134-4140.
    [28]
    Martinelli G,Boissel N,Chevallier P,et al.Complete hematologic and molecular response in adult patients with relapsed/refractory philadelphia chromosome-positive b-precursor acute lymphoblastic leukemia following treatment with blinatumomab:results from a phase II,single-arm,multicenter study[J].J Clin Oncol,2017,35(16):1795-1802.
    [29]
    Topp MS,Gökbuget N,Stein AS,et al.Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia:a multicentre,single-arm,phase 2 study[J].Lancet Oncol,2015,16(1):57-66.
    [30]
    Carter PJ,Lazar GA.Next generation antibody drugs:pursuit of the ‘high-hanging fruit’[J].Nat Rev Discov,2018,17(3):197-223.
    [31]
    von Stackelberg A,Locatelli F,Zugmaier G,et al.Phase I/Phase II Study of blinatumomab in pediatric patients with relapsed/refractory acute lymphoblastic leukemia[J].J Clin Oncol,2016,34(36):4381-4389.
    [32]
    Jen EY,Xu Q,Schetter A,et al.FDA approval:blinatumomab for patients with B-cell precursor acute lymphoblastic leukemia in morphologic remission with minimal residual disease[J].Clin Cancer Res,2019,25(2):473-477.
    [33]
    Zhu M,Wu B,Brandl C,et al.Blinatumomab,a bispecific T-cell engager(BiTE®)for CD-19 targeted cancer immunotherapy:clinical pharmacology and its implications[J].Clin Pharmacokinet,2016,55(10):1271-1288.
    [34]
    Tammen A,Derer S,Schwanbeck R,et al.Monoclonal antibodies against epidermal growth factor receptor acquire an ability to kill tumor cells through complement activation by mutations that selectively facilitate the hexamerization of igg on opsonized cells[J].J Immunol, 2017,198(4):1585-1594.
    [35]
    Mazor Y, Hansen A, Yang C, et al. Insights into the molecular basis of a bispecific antibody′s target selectivity[J].MAbs,2015,7(3):461-469.
    [36]
    Mazor Y,Oganesyan V,Yang C,et al.Improving target cell specificity using a novel monovalent bispecific IgG design[J].MAbs,2015,7(2):377-389.
    [37]
    Kosaka T,Tanizaki J,Paranal RM,et al.Response heterogeneity of EGFR and HER2 Exon 20 insertions to covalent EGFR and HER2 inhibitors[J].Cancer Res,2017,77(10):2712-2721.
    [38]
    Li Y,Hickson JA,Ambrosi DJ,et al.ABT-165,a dual variable domain immunoglobulin(DVD-Ig)targeting DLL4 and VEGF,demonstrates superior efficacy and favorable safety profiles in preclinical models[J].Mol Cancer Ther,2018,17(5):1039-1050.
    [39]
    Lee D,Kim D,Choi YB,et al.Simultaneous blockade of VEGF and Dll4 by HD105,a bispecific antibody,inhibits tumor progression and angiogenesis[J].MAbs,2016,8(5):892-904.
    [40]
    Klein C,Schaefer W,Regula JT.The use of CrossMAb technology for the generation of bi- and multispecific antibodies[J].MAbs,2016,8(6):1010-1020.
    [41]
    Bacac M,Fauti T,Sam J,et al.A Novel Carcinoembryonic antigen T-cell bispecific antibody(CEA TCB)for the treatment of solid tumors[J].Clin Cancer Res,2016,22(13):3286-3297.
    [42]
    Lehmann S,Perera R,Grimm HP,et al.In vivo fluorescence imaging of the activity of CEA TCB,a novel T-Cell bispecific antibody,reveals highly specific tumor targeting and fast induction of T-cell-mediated tumor killing[J].Clin Cancer Res,2016,22(17):4417-4427.
    [43]
    Wu J,Fu J,Zhang M,et al.AFM13:a first-in-class tetravalent bispecific anti-CD30/CD16A antibody for NK cell-mediated immunotherapy[J].J Hematol Oncol,2015,8:96.
    [44]
    Reusch U,Burkhardt C,Fucek I,et al.A novel tetravalent bispecific TandAb(CD30/CD16A)efficiently recruits NK cells for the lysis of CD30+ tumor cells[J].MAbs,2014,6(3):728-739.
    [45]
    Rothe A,Sasse S,Topp MS,et al.A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin lymphoma[J].Blood,2015,125(26):4024-4031.
  • Cited by

    Periodical cited type(6)

    1. 万瑞融,王希斌. CTLA-4纳米抗体与肿瘤适配体共修饰的双靶向脂质体构建. 医学理论与实践. 2024(01): 5-7+38 .
    2. 李建安,陈慧华,杨兰平,文玲波,贾燕华. 靶向药物和通路抑制剂治疗复发难治性B细胞非霍奇金淋巴瘤的研究进展. 广西医学. 2022(14): 1653-1656 .
    3. 陈敏,方翼. 双特异性抗体的免疫原性. 中国临床药理学与治疗学. 2021(10): 1208-1212 .
    4. 刘婧琳,吴春暖,宋晓坤. 抗肿瘤药物临床超常用药分析. 中国药房. 2020(07): 873-878 .
    5. 赵秋玲,杨琳,谢瑞祥. 9种获批上市的抗PD-1/PD-L1单抗药物的特征综述. 中国药房. 2020(18): 2294-2299 .
    6. 辛中帅,张彦彦,晋小雁,杨建红. 我国已上市治疗用单抗类产品分析. 中国药事. 2019(09): 986-990 .

    Other cited types(2)

Catalog

    Article views (973) PDF downloads (2159) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return