• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
LIN Xia, LI Na, LI Jinwei, YANG Ziyi, JIN Jian. Preparation and evaluation of an oral insulin enteric preparation based on polymer-lipid hybrid nanoparticles[J]. Journal of China Pharmaceutical University, 2019, 50(3): 308-316. DOI: 10.11665/j.issn.1000-5048.20190306
Citation: LIN Xia, LI Na, LI Jinwei, YANG Ziyi, JIN Jian. Preparation and evaluation of an oral insulin enteric preparation based on polymer-lipid hybrid nanoparticles[J]. Journal of China Pharmaceutical University, 2019, 50(3): 308-316. DOI: 10.11665/j.issn.1000-5048.20190306

Preparation and evaluation of an oral insulin enteric preparation based on polymer-lipid hybrid nanoparticles

More Information
  • To improve the oral bioavailability of insulin, an insulin-loaded enteric polymer-lipid hybrid nanoparticles(INS-NPs L100)was prepared using methoxy PEG-poly(D, L-lactide)(PEG-PLA), phospholipid s75 and Eudragit L100; in vitro and in vivo behaviors of INS-NPs L100 were evaluated. Insulin-loaded polymer-lipid hybrid nanoparticles(INS-NPs)were prepared by W/O/W double emulsion solvent evaporation method. INS-NPs formulation was optimized by single factor experiment using encapsulation efficiency, particle size, and in vitro release behavior of the corresponding INS-NPs L100 as evaluation indexes. The morphology, in vitro drug release profile and hypoglycemic effect of the INS-NPs L100 using the optimal INS-NPs and Eudragit® L100(used as enteric polymer)were assessed. The results showed that the encapsulation efficiency of the optimal INS-NPs was(62. 18±4. 51)%. The average particle size, PDI and Zeta potential was(225. 2±94. 3)nm, 0. 191±0. 068, and -(14. 84±1. 26)mV, respectively. The cumulative drug release from the INS-NPs L100 was only 8. 01% at 2 h in pH 1. 0 HCl solution, exhibiting a slow drug release behavior; while the drug release from INS-NPs L100 was 67. 31% at 6 h in phosphate buffer of pH 6. 8. Mereorer, after oral administration of INS-NPs L100 with a dose of 38 IU/kg, the blood glucose concentration of healthy rats was reduced to 76% of the initial values at 3. 5 h, exhibiting a sustained hypoglycemic effect. In summary, the INS-NPs L100 prepared in this study could effectively decrease the release rate of insulin in gastric juice, improve the stability of protein in the gastrointestinal tract, and provide a new approach for the oral administration of peptides and protein drugs.
  • [1]
    Wang L,Gao P,Zhang M,et al.Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013[J].JAMA,2017,317(24):2515-2523.
    [2]
    Li CY,Huang WL,Qian H.Advances in the research of long-acting strategy of insulin and GLP-1 analogs[J].J China Pharm Univ(中国药科大学学报),2018,49(6):660-670.
    [3]
    Wong CY,Al-Salami H,Dass CR.Microparticles,microcapsules and microspheres:a review of recent developments and prospects for oral delivery of insulin[J].Int J Pharm,2018,537(1/2):223-244.
    [4]
    Deutel B,Laffleur F,Palmberger,et al.In vitro characterization of insulin containing thiomeric microparticles as nasal drug delivery system[J].Eur J Pharm Sci,2016,81:157-161.
    [5]
    Ledet G, Graves RA, Bostanian LA, et al. A second-generation inhaled insulin for diabetes mellitus[J].Am J Health-Syst Pharm,2015,72(14):1181-1187.
    [6]
    Cai L,Zhu Z.Progress in non-invasive routes for insulin preparations[J].J China Pharm Univ(中国药科大学学报),2007,38(2):105-107.
    [7]
    Geho WB,Rosenberg LN,Schwartz SL,et al.A single-blind,placebo-controlled,dose-ranging trial of oral hepatic-directed vesicle insulin add-on to oral antidiabetic treatment in patients with type 2 diabetes mellitus[J].J Diabetes Sci Technol,2014,8(3):551-559.
    [8]
    Eldor R,Arbit E,Corcos A,et al.Glucose-reducing effect of the ORMD-0801 oral insulin preparation in patients with uncontrolled type 1 diabetes:a pilot study[J].PLoS One,2013,8(4):59524.
    [9]
    Li CY,Huang WL,Qian H.Advances in the research of long acting strategy of insulin and GLP-1 analogs[J].J China Pharm Univ(中国药科大学学报),2018,49(6):660-670.
    [10]
    Grigoras AG. Polymer-lipid hybrid systems used as carriers for insulin delivery[J].Nanomedicine,2017,13(8):2425-2437.
    [11]
    Sun S,Liang N,Yamamoto H,et al.pH-sensitive poly(lactide-co-glycolide)nanoparticle composite microcapsules for oral delivery of insulin[J].Int J Nanomed,2015,10:3489-3498.
    [12]
    Ben-Shabat S,Kumar N,Domb AJ.PEG-PLA block copolymer as potential drug carrier:preparation and characterization[J].Macromol Biosci,2006,6(12):1019-1025.
    [13]
    Liu J,Gong T,Wang C,et al.Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles:preparation and characterization[J].Int J Pharm,2007,340(1/2):153-162.
    [14]
    García-Díaz M,Foged C,Nielsen HM.Improved insulin loading in poly(lactic-co-glycolic)acid(PLGA)nanoparticles upon self-assembly with lipids[J].Int J Pharm,2015,482(1/2):84-91.
    [15]
    Ghasemi R,Abdollahi M,Emamgholi Zadeh E,et al.mPEG-PLA and PLA-PEG-PLA nanoparticles as new carriers for delivery of recombinant human growth hormone(rhGH)[J].Sci Rep,2018,8(1):9854.
    [16]
    Gou J,Feng S,Liang Y,et al.Polyester-solid lipid mixed nanoparticles with improved stability in gastro-intestinal tract facilitated oral delivery of larotaxel[J].Mol Pharm,2017,14(11):3750-3761.
  • Related Articles

    [1]GUO Jiru, QIN Chunjun, HU Jing, CAO Xin, XU Yongxue, LIU Jiankai, YIN Jian. Quantitative determination of capsular polysaccharide, C-polysaccharide, phosphorus of carbohydrate antigens from Streptococcus pneumoniae by quantitative NMR using a single internal standard[J]. Journal of China Pharmaceutical University, 2024, 55(4): 472-477. DOI: 10.11665/j.issn.1000-5048.2024020502
    [2]YAO Jian, SHAO Lei, CHEN Daijie, ZHANG Yubin. Transcriptomic analysis of a spiramycin I-resistant Staphylococcus aureus mutant[J]. Journal of China Pharmaceutical University, 2017, 48(6): 738-744. DOI: 10.11665/j.issn.1000-5048.20170617
    [3]XING Ming-xun, JIA Sheng-mei, YUAN Peng, SHI Qi-yun, CHENG Wei, JIN Kun-qi, YU Lu. Inhibition of azithromycin on biofilms of Staphylococcus aureus[J]. Journal of China Pharmaceutical University, 2012, 43(6): 553-559.
    [4]Properties and Type Determinations of Exopenicillinases from Staphylococcus aureus[J]. Journal of China Pharmaceutical University, 1995, (3): 183-186.
    [5]Action of Cell-Bound Penicillinase in Mediating Resistance of Staphylococcus aureus[J]. Journal of China Pharmaceutical University, 1991, (6): 363-366.
    [6]Protoplast-Dependent Plasmid Elimination of Staphylococcus Aureus[J]. Journal of China Pharmaceutical University, 1990, (3): 179-181.
    [7]PLASMID ELIMINATION AND TRANSDUCTION OF STAPHYLOCOCCUS AUREUS RN1304 AND ITS ALBUS VARIANT[J]. Journal of China Pharmaceutical University, 1989, (3): 151-154.
    [8]PROPERTIES OF A BETA-LACTAMASE FROM STAPHYLOCOCCUS AUREUS~*[J]. Journal of China Pharmaceutical University, 1988, (1): 38-41.
    [9]EXTRACTION AND DETECTION OF ANTIBIOTIC RESISTANT PLASMID DNA IN STAPHYLOCOCUS AUREUS[J]. Journal of China Pharmaceutical University, 1985, (2): 53-58.
    [10]ELIMINATION OF ANTIBIOTIC RESISTANT PLASMIDS IN STAPHYLOCOCCUS AUREUS[J]. Journal of China Pharmaceutical University, 1985, (2): 48-52.

Catalog

    Article views (687) PDF downloads (1122) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return