Citation: | DAI Yan, WU Xuri, CHEN Yijun. Advances in strategies for activating silent biosynthetic gene clusters in Streptomyces[J]. Journal of China Pharmaceutical University, 2019, 50(4): 379-388. DOI: 10.11665/j.issn.1000-5048.20190401 |
[1] |
Baltz RH.Gifted microbes for genome mining and natural product discovery[J].J Ind Microbiol Biotechnol,2016,44(4/5):573-588.
|
[2] |
Rutledge PJ,Challis GL.Discovery of microbial natural products by activation of silent biosynthetic gene clusters[J].Nat Rev Microbiol,2015,13(8):509-523.
|
[3] |
Yoo YJ,Kim H,Park SR,et al.An overview of rapamycin:from discovery to future perspectives[J].J Ind Microbiol Biotechnol,2017,44(4/5):537-553.
|
[4] |
Zarins-Tutt JS,Barberi TT,Gao H,et al.Prospecting for new bacterial metabolites:a glossary of approaches for inducing,activating and upregulating the biosynthesis of bacterial cryptic or silent natural products[J].Nat Prod Rep,2016,33(1):54-72.
|
[5] |
Blin K, Kim HU, Medema MH, et al. Recent development of antiSMASH and other computational approaches to mine secondary metabolite biosynthetic gene clusters[J].Brief Bioinformatics,2017.doi: 10.1093/bib/bbx146.
|
[6] |
Weber T,Kim HU.The secondary metabolite bioinformatics portal:computational tools to facilitate synthetic biology of secondary metabolite production[J].Synth Syst Biotechnol,2016,1(2):69-79.
|
[7] |
Singh M,Chaudhary S,Sareen D.Non-ribosomal peptide synthetases:identifying the cryptic gene clusters and decoding the natural product[J].J Biosci,2017,42(1):175-187.
|
[8] |
Röttig M,Medema MH,Blin K,et al.NRPSpredictor2:a web server for predicting NRPS adenylation domain specificity[J].Nucleic Acids Res,2011,39(Web Server issue):W362-W367.
|
[9] |
Khater S,Gupta M,Agrawal P,et al.SBSPKSv2:structure-based sequence analysis of polyketide synthases and non-ribosomal peptide synthetases[J].Nucleic Acids Res,2017,45(W1):W72-W79.
|
[10] |
Ziemert N,Podell S,Penn K,et al.The natural product domain seeker NaPDoS:a phylogeny based bioinformatic tool to classify secondary metabolite gene diversity[J].PLoS One,2012,7(3):e34064.
|
[11] |
Blin K,Wolf T,Chevrette MG,et al.AntiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification[J].Nucleic Acids Res,2017,45(W1):W36-W41.
|
[12] |
Blin K, Pascal Andreu V, de Los Santos ELC, et al. The antiSMASH database version 2:a comprehensive resource on secondary metabolite biosynthetic gene clusters[J].Nucleic Acids Res,2019,47(D1):D625-D630.
|
[13] |
Skinnider MA,Merwin NJ,Johnston CW,et al.PRISM 3:expanded prediction of natural product chemical structures from microbial genomes[J].Nucleic Acids Res,2017,45(W1):W49-W54.
|
[14] |
Tietz JI,Schwalen CJ,Patel PS,et al.A new genome-mining tool redefines the lasso peptide biosynthetic landscape[J].Nat Chem Biol,2017,13(5):470-478.
|
[15] |
Schwalen CJ,Hudson GA,Bryce K,et al.Bioinformatic expansion and discovery of thiopeptide antibiotics[J].J Am Chem Soc,2018,140(30):9494-9501.
|
[16] |
Mohimani H,Kersten RD,Liu WT,et al.Automated genome mining of ribosomal peptide natural products[J].ACS Chem Biol,2014,9(7):1545-1551.
|
[17] |
van Heel AJ,de Jong A,Song C,et al.BAGEL4:a user-friendly web server to thoroughly mine RiPPs and bacteriocins[J].Nucleic Acids Res,2018,46(W1):W278-W281.
|
[18] |
Agrawal P,Khater S,Gupta M,et al.RiPPMiner:a bioinformatics resource for deciphering chemical structures of RiPPs based on prediction of cleavage and cross-links[J].Nucleic Acids Res,2017,45(W1):W80-W88.
|
[19] |
Cimermancic P,Medema MH,Claesen J,et al.Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters[J].Cell,2014,158(2):412-421.
|
[20] |
Cruz-Morales P,Kopp JF,Martínez-Guerrero,et al.Phylogenomic analysis of natural products biosynthetic gene clusters allows discovery of arseno-organic metabolites in model Streptomycetes[J].Genome Biol Evol,2016,8(6):1906-1916.
|
[21] |
Alanjary M,Kronmiller B,Adamek M,et al.The antibiotic resistant target seeker(ARTS),an exploration engine for antibiotic cluster prioritization and novel drug target discovery[J].Nucleic Acids Res,2017,45(W1):W42-W48.
|
[22] |
Bode HB,Bethe B,Höfs R,et al.Big effects from small changes possible ways to explore nature′s chemical diversity[J].Chem Bio Chem,2002,3(7):619-627.
|
[23] |
Rateb ME,Houssen WE,Arnold M,et al.Chaxamycins A-D,bioactive ansamycins from a hyper-arid desert Streptomyces sp.[J].J Nat Prod,2011,74(6):1491-1499.
|
[24] |
Seyedsayamdost MR.High-throughput platform for the discovery of elicitors of silent bacterial gene clusters[J].Proc Natl Acad Sci U S A,2014,111(20):7266-7271.
|
[25] |
Onaka H,Mori Y,Igarashi Y,et al.Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species[J].Appl Environ Microbiol,2011,77(2):400-406.
|
[26] |
Du D,Katsuyama Y,Onaka H,et al.Production of a novel amide-containing polyene by activating a cryptic biosynthetic gene cluster in Streptomyces sp.MSC090213JE08[J].Chem Biol Chem,2016,17(15):1464-1471.
|
[27] |
Thanapipatsiri A,Gomez-Escribano JP,Song L,et al.Discovery of unusual biaryl polyketides by activation of a silent Streptomyces venezuelae biosynthetic gene cluster[J].ChemBioChem,2016,17(22):2189-2198.
|
[28] |
Wang L,Hu Y,Zhang Y,et al.Role of sgcR3 in positive regulation of enediyne antibiotic C-1027 production of Streptomyces globisporus C-1027[J].BMC Microbiol,2009,9(1):14.
|
[29] |
Tong Y,Charusanti P,Zhang L,et al.CRISPR-Cas9 based engineering of actinomycetal genomes[J].ACS Synth Biol,2015,4(9):1020-1029.
|
[30] |
Sander JD,Joung JK.CRISPR-Cas systems for editing,regulating and targeting genomes[J].Nat Biotechnol,2014,32(4):347-355.
|
[31] |
Tong Y,Robertsen HL,Blin K,et al.CRISPR-Cas9 toolkit for actinomycete genome editing[J].Methods Mol Biol,2018,1671:163-184.
|
[32] |
Zhao Y,Li L,Zheng G,et al.CRISPR/dCas9-mediated multiplex gene repression in Streptomyces[J].Biotechnol J,2018,13(9):e1800121.
|
[33] |
Mcarthur M,Bibb MJ.Manipulating and understanding antibiotic production in Streptomyces coelicolor A3(2)with decoy oligonucleotides[J].Proc Natl Acad Sci U S A,2008,105(3):1020-1025.
|
[34] |
Wang B,Guo F,Dong SH,et al.Activation of silent biosynthetic gene clusters using transcription factor decoys[J].Nat Chem Biol,2019,15(2):111-114.
|
[35] |
Zhang MM,Wong FT,Wang Y,et al.CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters[J].Nat Chem Biol,2017,13:607-611.
|
[36] |
Ren H,Wang B,Zhao H.Breaking the silence:new strategies for discovering novel natural products[J].Curr Opin Biotechnol,2017,48:21-27.
|
[37] |
Xu F,Nazari B,Moon K,et al.Discovery of a cryptic antifungal compound from Streptomyces albus J1074 using high-throughput elicitor screens[J].J Am Chem Soc,2017,139(27):9203-9212.
|
[38] |
Guo F,Xiang S,Li L,et al.Targeted activation of silent natural product biosynthesis pathways by reporter-guided mutant selection[J].Metab Eng,2015,28:134-142.
|
[39] |
Kim JH,Feng Z,Bauer JD,et al.Cloning large natural product gene clusters from the environment:piecing environmental DNA gene clusters back together with TAR[J].Biopolymers,2010,93(9):833-844.
|
[40] |
Lee NCO,Larionov V,Kouprina N.Highly efficient CRISPR/Cas9-mediated TAR cloning of genes and chromosomal loci from complex genomes in yeast[J].Nucleic Acids Res,2015,43(8):e55.
|
[41] |
Fu J,Bian X,Hu S,et al.Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting[J].Nat Biotechnol,2012,30(5):440-446.
|
[42] |
Li L,Jiang W,Lu Y.New strategies and approaches for engineering biosynthetic gene clusters of microbial natural products[J].Biotechnol Adv,2017,35(8):936-949.
|
[43] |
Jiang W,Zhao X,Gabrieli T,et al.Cas9-assisted targeting of chromosome segments CATCH enables one-step targeted cloning of large gene clusters[J].Nat Commun,2015,6:8101.
|
[44] |
Du D,Wang L,Tian Y,et al.Genome engineering and direct cloning of antibiotic gene clusters via phage φBT1 integrase-mediated site-specific recombination in Streptomyces[J].Sci Rep,2015,5:8740.
|
[45] |
Hu S,Liu Z,Zhang X,et al.“Cre/loxP plus BAC”:a strategy for direct cloning of large DNA fragment and its applications in Photorhabdus luminescens and Agrobacterium tumefaciens[J].Sci Rep,2016,6(1):29087.
|
[46] |
Kang HS,Charlop-Powers Z,Brady SF.Multiplexed CRISPR/Cas9 and TAR-mediated promoter engineering of natural product biosynthetic gene clusters in yeast[J].ACS Synth Biol,2016,5(9):1002-1010.
|
[47] |
Yamanaka K,Reynolds KA,Kersten RD,et al.Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A[J].Proc Natl Acad Sci U S A,2014,111(5):1957-1962.
|
[48] |
Chao R,Yuan Y,Zhao H.Recent advances in DNA assembly technologies[J].FEMS Yeast Res,2015,15(1):1-9.
|