Citation: | CUI Huayuan, YAO Dan, WANG Yuxiang, HU Yiqiao. Novel nano-scaled Mn-metal-organic framework for enhancing photodynamic therapy through overcoming tumor hypoxia[J]. Journal of China Pharmaceutical University, 2019, 50(6): 678-685. DOI: 10.11665/j.issn.1000-5048.20190607 |
[1] |
Fan WP,Huang P,Chen XY.Overcoming the Achilles′ heel of photodynamic therapy[J].Chem Soc Rev,2016,45(23):6488-6519.
|
[2] |
Dbrowski JM, Arnaut LG. Photodynamic therapy(PDT)of cancer:from local to systemic treatment[J].Photochem Photobiol Sci,2015,14(10):1765-1780.
|
[3] |
Lucky SS,Soo KC,Zhang Y.Nanoparticles in photodynamic therapy[J].Chem Rev,2015,115(4):1990-2042.
|
[4] |
Liu L,Ruan Z,Li TW,et al.Near infrared imaging-guided photodynamic therapy under an extremely low energy of light by galactose targeted amphiphilic polypeptide micelle encapsulating BODIPY-Br2[J].Biomater Sci,2016,4(11):1638-1645.
|
[5] |
Zhu S,Gu ZJ,Zhao YL.Harnessing tumor microenvironment for nanoparticle-mediated radiotherapy[J].Adv Therap,2018,1(5):1800050.
|
[6] |
Zeng JY,Zou MZ,Zhang MK,et al.Π-extended benzoporphyrin-based metal-organic framework for inhibition of tumor metastasis[J].ACS Nano,2018,12(5):4630-4640.
|
[7] |
Dang JJ, He H, Chen DL, et al. Manipulating tumor hypoxia toward enhanced photodynamic therapy(PDT)[J].Biomater Sci,2017,5(8):1500-1511.
|
[8] |
Chen HC,Tian JW,He WJ,et al.H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells[J].J Am Chem Soc,2015,137(4):1539-1547.
|
[9] |
Chen JJ,Pan H,Lanza GM,et al.Perfluorocarbon nanoparticles for physiological and molecular imaging and therapy[J].Adv Chronic Kidney Dis,2013,20(6):466-478.
|
[10] |
Fan WP, Bu WB, Shen B, et al. Intelligent MnO2 nanosheets anchored with upconversion nanoprobes for concurrent pH-/H2O2-responsive UCL imaging and oxygen-elevated synergetic therapy[J].Adv Mater Weinheim,2015,27(28):4155-4161.
|
[11] |
Liu RR,Spicer G,Chen SY,et al.Theoretical model for optical oximetry at the capillary level:exploring hemoglobin oxygen saturation through backscattering of single red blood cells[J].J Biomed Opt,2017,22(2):25002.
|
[12] |
Xie GC,Zhang K,Guo BD,et al.Graphene-based materials for hydrogen generation from light-driven water splitting[J].Adv Mater Weinheim,2013,25(28):3820-3839.
|
[13] |
Filonenko GA,van Putten R,Hensen EJM,et al.Catalytic(de)hydrogenation promoted by non-precious metals-Co,Fe and Mn:recent advances in an emerging field[J].Chem Soc Rev,2018,47(4):1459-1483.
|
[14] |
Prasad P,Gordijo CR,Abbasi AZ,et al.Multifunctional albumin-MnO2 nanoparticles modulate solid tumor microenvironment by attenuating hypoxia,acidosis,vascular endothelial growth factor and enhance radiation response[J].ACS Nano,2014,8(4):3202-3212.
|
[15] |
Lan GX,Ni KY,Xu ZW,et al.Nanoscale metal-organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy[J].J Am Chem Soc,2018,140(17):5670-5673.
|
[16] |
Park J,Jiang Q,Feng DW,et al.Size-controlled synthesis of porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy[J].J Am Chem Soc,2016,138(10):3518-3525.
|
[17] |
Tasiopoulos AJ,Milligan PL Jr,Abboud KA,et al.Mixed transition metal-lanthanide complexes at high oxidation states:heteronuclear CeIVMnIV clusters[J].Inorg Chem,2007,46(23):9678-9691.
|
[18] |
Liu Q,Cong HJ,Deng HX.Deciphering the spatial arrangement of metals and correlation to reactivity in multivariate metal-organic frameworks[J].J Am Chem Soc,2016,138(42):13822-13825.
|
[19] |
Wang KC, Feng DW, Liu TF, et al. A series of highly stable mesoporous metalloporphyrin Fe-MOFs[J].J Am Chem Soc,2014,136(40):13983-13986.
|