• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
GE Yiran, YANG Jian, LI Yuyan, XU Yungen. Advances of near-infrared fluorescent probes for detection of Alzheimer′s disease[J]. Journal of China Pharmaceutical University, 2020, 51(2): 138-151. DOI: 10.11665/j.issn.1000-5048.20200203
Citation: GE Yiran, YANG Jian, LI Yuyan, XU Yungen. Advances of near-infrared fluorescent probes for detection of Alzheimer′s disease[J]. Journal of China Pharmaceutical University, 2020, 51(2): 138-151. DOI: 10.11665/j.issn.1000-5048.20200203

Advances of near-infrared fluorescent probes for detection of Alzheimer′s disease

More Information
  • Alzheimer′s disease(AD)is a chronic neurodegenerative diseasecommonly seen in the elderlys. Several therapeutic drugs have failed in phase III clinical trials in recent years and there have been no efficient treatment for AD currently. Thus, there has been an urgent need for the effective methods of AD diagnosis at early stage. Developingnear-infrared fluorescentprobes for AD hallmarks detection has been a promising research field. In this review, we summarized a variety of near-infrared fluorescence(NIRF)probes reported in the past decade, which capable of detecting β-amyloid, Tau protein and reactive oxygen species, including their chemical strucutres、optical properties, in vitro and in vivo studies. Furthermore, we alsoraised some new directions for AD diagnosing. We believe that these new directions raised herein will benefit the future development of NIRF probes in the field of AD research.
  • [1]
    Brookmeyer R,Johnson E,Zieglergraham K,et al.Forecasting the global burden of Alzheimer′s disease[J].Alzheimers Dement,2007,3(3):186-191.
    [2]
    Ferri CP,Prince M,Brayne C,et al.Global prevalence of dementia: a Delphi consensus study[J].Lancet,2005,366:2112-2117.
    [3]
    Mayeux R.Epidemiology of neurodegeneration[J].Annu Rev Neurosci,2003,26(1):81.
    [4]
    Tabert MH,Liu X,Doty RL,et al.A 10-item smell identification scale related to risk for Alzheimer′s disease[J].Ann Neurol,2005,58(1):155-160.
    [5]
    Kung,Hank F.The β-amyloid hypothesis in Alzheimer′s disease:seeing Is believing[J].ACS Med Chem Lett,2012,3(4):265-267.
    [6]
    StaderiniM,María AM,Bolognesi ML,et al.Imaging of β-amyloid plaques by near infrared fluorescent tracers:a new frontier for chemical neuroscience[J].Chem Soc Rev,2015,44(7):1807-1819.
    [7]
    Mckhann G,Drachman D,Folstein M,et al.Clinical diagnosis of Alzheimer′s disease[J].Neurology,1984,34(7):939-944.
    [8]
    Tong H, Lou K, Wang W. Near-infrared fluorescent probes for imaging of amyloid plaques in Alzheimer′s disease[J].Acta Pharm Sin B,2015,5(1):25-33.
    [9]
    Golde TE,Bacskai BJ.Bringing amyloid into focus[J].Nat Biotechnol,2005,23(5):552.
    [10]
    Cui,Mengchao.Past and recent progress of molecular imaging probes for β-amyloid plaques in the brain[J].Curr Med Chem,2014,21(1):82-112.
    [11]
    Bertoncini CW,Celej MS.Small molecule fluorescent probes for the detection of amyloid self-assembly in vitro and in vivo[J].Curr Protein Pept Sc,2011,12(3):206-220.
    [12]
    Raymond SB,Kumar ATN,Boas DA,et al.Optimal parameters for near infrared fluorescence imaging of amyloid plaques in Alzheimer′s disease mouse models[J].Phys Med Biol,2009,54(20):6201-6216.
    [13]
    Licha K,Olbrich C.Optical imaging in drug discovery and diagnostic applications[J].Adv Drug Deliver Rev,2005,57(8):1087-1108.
    [14]
    Hardy J,Selkoe DJ.The amyloid hypothesis of Alzheimer′s disease:progress and problems on the road to therapeutics[J].Science,2002,297:353-356.
    [15]
    Mclean CA,Cherny RA,Fraser FW,et al.Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer′s disease[J].Ann Neurol,2010,46(6):860-866.
    [16]
    Klein WL,Krafft GA,Finch CE.Targeting small β oligomers:the solution to an Alzheimer′s disease conundrum[J]?Trends Neurosci,2001,24(4):219-224.
    [17]
    Nesterov EE,Skoch J,Hyman BT,et al.In vivo optical imaging of amyloid aggregates in brain:design offluorescent markers[J].Angew Chem Int Ed Engl,2005,44:5452-5456.
    [18]
    Raymond SB,Skoch J,Hills ID,et al.Smart optical probes for near-infrared fluorescence imaging of Alzheimer′s disease pathology[J].Eur J Nucl Med Mol,2008,35(1):93-98.
    [19]
    Hintersteiner M,Enz A, Frey P,et al.In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe[J].Nat Biotechnol,2005,23(5):577-583.
    [20]
    Ran C,Xu X,Raymond SB,et al.Design,synthesis,and testing of difluoroboron-derivatized curcumins as near-infrared probes for in vivo detection of amyloid-β deposits[J].J Am Chem Soc,2009,131(42):15257-15261.
    [21]
    Yang F,Lim GP,Begum AN,et al.Curcumin inhibits formation of amyloid β oligomers and fibrils,binds plaques,and reduces amyloid in vivo[J].J Biol Chem,2005,280(7):5892-5901.
    [22]
    Ran C, Moore A. Spectral unmixing imaging of wavelength-responsive fluorescent probes:an application for the real-time report of amyloid beta species in Alzheimer′s disease[J].Mol Imagine Biol,2012,14(3):293-300.
    [23]
    Zhang X,Tian Y,Li Z,et al.Design and synthesis of curcumin analogues for in vivo fluorescence imaging and inhibiting copper-induced cross-linking of amyloid beta species in Alzheimer′s disease[J].J Am Chem Soc,2013,135(44):16397-16409.
    [24]
    Li Y,Yang J,Liu H,et al.Tuning stereo-hindrance of curcumin scaffold for selective imaging of soluble forms of amyloid beta species[J].Chem Sci,2017:8(11):7710-7717.doi: 10.1039.C7SC02050C.
    [25]
    Ono M,Ishikawa M,Kimura H,et al.Development of dual functional SPECT/fluorescent probes for imaging cerebral β-amyloid plaques[J].Bioorg Med Chem Lett,2010,20(13):3885-3888.
    [26]
    Ono M,Watanabe H,Kimura H,et al.BODIPY-based molecular probe for imaging of cerebral β-amyloid plaques[J].ACS ChemNeurosci,2012,3(4):319-324.
    [27]
    Watanabe H,Ono M,Matsumura K,et al.Molecular imaging of β-amyloid plaques with near-infrared boron dipyrromethane(BODIPY)-based fluorescent probes[J].Mol Imagine,2013,12(5):338-347.
    [28]
    Okamura N,Mori M,Furumoto S,et al.In vivo detection of amyloid plaques in the mouse brain using the near-infrared fluorescence probe THK-265[J].J Alzheimers Dis,2011,23(1):37-48.
    [29]
    Schmidt A,Pahnke J.Efficient near-infrared in vivo imaging of amyoid-β deposits in Alzheimer′s disease mouse models[J].J Alzheimers Dis,2012,30:651-664.
    [30]
    Cui M,Ono M,Watanabe H,et al.Smart near-infrared fluorescence probes with donor-acceptor structure for in vivo detection of β-amyloid deposits[J].J Am Chem Soc,2014,136(9):3388-3394.
    [31]
    Fu H,Cui M,Tu P,et al.Evaluation of molecules based on the electron donor-acceptor architecture as near-infrared β-amyloidal-targeting probes[J].Chem Commun,2014,50(80):11875-11878.
    [32]
    Fu H,Tu P,Zhao L,et al.Amyloid-β deposits target efficient near-infrared fluorescent probes:synthesis,in vitro evaluation and in vivo imaging[J].Anal Chem,2016,88(3):1944.
    [33]
    Hualong F,Mengchao C,Liu Z,et al.Highly sensitive near-infrared fluorophores for in vivo detection of amyloid-β plaques in Alzheimer′s disease[J].J Med Chem,2015,58(17):6972.
    [34]
    Ni W,Kou X,Yang Z,et al.Tailoring longitudinal surface plasmon wavelengths,scattering and absorption cross sections of gold nanorods[J].ACS Nano,2008,2:677-686.
    [35]
    Eghtedari M,Oraevsky A,Copland JA,et al.High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system[J].Nano Lett,2007,7:1914-1918.
    [36]
    Meng L,Yijia G,Andong Z,et al.Using multifunctional peptide conjugated Au nanorods for monitoring β-amyloid aggregation and chemo-photothermal treatment of Alzheimer′s disease[J].Theranostics,2017,7(12):2996-3006.
    [37]
    Li YH,Xu D,Chan HN,et al.Bioimaging:dual-modal NIR-fluorophore conjugated magnetic nanoparticle for imaging amyloid-β species in vivo[J].Small,2018,14(28):1800901.
    [38]
    Li Y, Xu D, Ho SL, et al. A theranostic agent for in vivo near-infrared imaging of β-amyloid species and inhibition of β-amyloid aggregation[J].Biomaterials,2016,94:84-92.
    [39]
    Pascal D,Ye FF,Du ZY,et al.Design and synthesis of new theranostic agents for near-infrared imaging of β-amyloid plaques and inhibition of β-amyloid aggregation in Alzheimer′s disease[J].Dyes Pigments,2017,147:130-140.
    [40]
    Zhu JY,Zhou LF,Li YK,et al.In vivo near-infrared fluorescence imaging of amyloid-β plaques with a dicyanoisophorone-based probe[J].Anal Chim Acta,2017,961:112-118.
    [41]
    Rajasekhar K,Narayanaswamy N,Murugan NA,et al.Aβ plaque-selective NIR fluorescence probe to differentiate Alzheimer′s disease from tauopathies[J].Biosens Bioelectron,2017,98:54-61.
    [42]
    Lee M,Kim M,Tikum AF,et al.A near-infrared fluorescent probe for amyloid-β aggregates[J].Dyes Pigments,2019,162:97-103.
    [43]
    Iqbal K,Alonso AC,Chen S,et al.Tau pathology in Alzheimer disease and other tauopathies[J].BBA-Biomembranes,2005,1739(2):198-210.
    [44]
    Grundke-Iqbal I,Iqbal K,Tung YC,et al.Abnormal phosphorylation of the microtubule -associated protein tau(tau)in Alzheimer cytoskeletal pathology[J].Proc Natl Acad Sci U S A,1986,83(13):4913-4917.
    [45]
    Grundkeiqbal I,Iqbal K,Quinlan M,et al.Microtubule-associated protein tau.A component of Alzheimer paired helical filaments[J].J Biol Chem,1986,261(13):6084-6089.
    [46]
    Shao P.Alzheimer′s disease imaging with a novel Tau targeted near infrared ratiometric probe[J].Am J Nucl Med Mol Imaging,2013,3(2):102-117.
    [47]
    Park KS,Seo Y,Kim MK,et al.A curcumin-based molecular probe for near-infrared fluorescence imaging of tau fibrils in Alzheimer′s disease[J].Org Biomol Chem,2015,13(46):11194-11199.
    [48]
    Peter V,Hye-Ri Kim,Jinho S,et al.Rational design of in vivo Tau tangle-selective near-infrared fluorophores:expanding the BODIPY universe[J].J Am Chem Soc,2017,139(38):13393-13403.
    [49]
    Maruyama M,Shimada H,Suhara T,et al.Imaging of Tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls[J].Neuron,2013,79(6):1094-1108.
    [50]
    Butterfield DA,Lange MLB,Sultana R.Involvements of the lipid peroxidation product,HNE,in the pathogenesis and progression of Alzheimer′s disease[J].Biochim Biophys Acta,2010,1801(8):924-929.
    [51]
    Cheignon C,Tomas M,Bonnefontrousselot D,et al.Oxidative stress and the amyloid beta peptide in Alzheimer′s disease[J].Redox Biol,2018,14:450-464.
    [52]
    Tönnies,Eric,Trushina E.Oxidative stress,synaptic dysfunction,and Alzheimer′s disease[J].J Alzheimers Dis,2017,57(4):1105-1121.
    [53]
    Butterfield DA,Lauderback CM.Lipid peroxidation and protein oxidation in Alzheimer′s disease brain:potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress[J].Free Radical Bio Med,2002,32(11):1050-1060.
    [54]
    Yang J,Yang J,Liang SH,et al.Imaging hydrogen peroxide in Alzheimer′s disease via cascade signal amplification[J].Sci Rep,2016,6(7):442-442.
    [55]
    Yang J,Zhang X,Yuan P,et al.Oxalate-curcumin-based probe for micro-and macroimaging of reactive oxygen species in Alzheimer′s disease[J].Proc Natl Acad Sci U S A,2017:201706248.
  • Related Articles

    [1]CHEN Yanqing, GONG Ping, LIU Zhen, ZHANG Yan, YU Yang. Serum amyloid A 3 deficiency improves cognitive impairment and attenuates tau pathology in mouse model of Alzheimer′s disease[J]. Journal of China Pharmaceutical University, 2021, 52(5): 586-595. DOI: 10.11665/j.issn.1000-5048.20210511
    [2]CHEN Yingjie, GAO Xiangdong, CHEN Song. Effects and mechanisms of FGF21 on neuronal damage induced by rotenone[J]. Journal of China Pharmaceutical University, 2020, 51(6): 718-723. DOI: 10.11665/j.issn.1000-5048.20200611
    [3]SUN Yan, GAO Xiangdong, CHEN Song. Effect and mechanism of FGF21 on astrocyte damage induced by Aβ25-35[J]. Journal of China Pharmaceutical University, 2019, 50(4): 490-496. DOI: 10.11665/j.issn.1000-5048.20190415
    [4]CHEN Suting, CHEN Song, GAO Xiangdong. Construction, expression, purification and neuroprotective activity of TAT-FGF21 fusion protein[J]. Journal of China Pharmaceutical University, 2018, 49(4): 496-501. DOI: 10.11665/j.issn.1000-5048.20180417
    [5]YU Haiyang, CHEN Song, XU Zheng, GAO Xiangdong, YAO Wenbing. Protective effect of fibroin peptides on Aβ25-35-induced injury in SH-SY5Y cells and its mechanism[J]. Journal of China Pharmaceutical University, 2017, 48(5): 609-613. DOI: 10.11665/j.issn.1000-5048.20170517
    [6]WANG Dandan, KORAMAGAZI Arouna, MAO Yong, YU Feng. Rhein induces apoptosis in L-02 cells via reactive oxygen species-independent endoplasmic reticulum stress pathway[J]. Journal of China Pharmaceutical University, 2016, 47(2): 215-221. DOI: 10.11665/j.issn.1000-5048.20160215
    [7]CHEN Jianping, REN Xinsheng, SUN Zhonghua, GUO Zaiyu. Protective effects and mechanisms of breviscapine on endothelial cells[J]. Journal of China Pharmaceutical University, 2015, 46(5): 610-616. DOI: 10.11665/j.issn.1000-5048.20150516
    [8]Effects of MCI-186 on Oxidative Stress-mediated Cell Damage Induced by H2O2 and Reactive Oxygen Species Formation in Brain Neurons[J]. Journal of China Pharmaceutical University, 2004, (6): 84-87.
    [9]WU Yu-Lin, YANG Zheng. Effects of MCI-186 on Oxidative Stress-mediated Cell Damage Induced by H_2O_2 and Reactive Oxygen Species Formation in Brain Neurons[J]. Journal of China Pharmaceutical University, 2004, (6).
    [10]Effects of Crocetin on the Myocardial Cell Damages Due to Oxidative Stress[J]. Journal of China Pharmaceutical University, 2003, (5): 66-69.
  • Cited by

    Periodical cited type(1)

    1. 盖婷婷,高春红,陈哲,蒲永利,沈增瑞,唐科友,许静. 近红外荧光探针检测β-淀粉样蛋白的研究进展. 齐鲁工业大学学报. 2022(02): 34-38 .

    Other cited types(1)

Catalog

    Article views (746) PDF downloads (1380) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return