Citation: | WEI Yuanyuan, YANG Fan, TANG Jie, YU Lifang. Advances in the research of anti-tuberculosis drugs[J]. Journal of China Pharmaceutical University, 2020, 51(2): 231-239. DOI: 10.11665/j.issn.1000-5048.20200215 |
[1] |
Geneva: World Health Organization. Global tuberculosisreport 2018[EB/OL].(2018-09-18)[2019-09-11] .https://www.who.int/tb/publications/global_report/en/.
|
[2] |
Zumla A,Nahid P,Cole ST.Advances in the development of new tuberculosis drugs and treatment regimens[J].Nat Rev Drug Discov,2013,12(5):388-404.
|
[3] |
Falzon D,Jaramillo E,Schunemann HJ,et al.WHO guidelines for the programmatic management of drug-resistant tuberculosis:2011 update[J].Eur Respir J,2011,38(3):516-528.
|
[4] |
Brennan PJ.Structure,function,and biogenesis of the cell wall of Mycobacterium tuberculosis[J].Tuberculosis,2003,83(1/2/3):91-97.
|
[5] |
Favrot L,Ronning DR.Targeting the mycobacterial envelope for tuberculosis drug development[J].Expert Rev Anti Infect Ther,2012,10(9):1023-1036.
|
[6] |
Horsburgh CR,D.M,Barry CE,et al.Treatment of tuberculosis[J].N Engl J Med,2015,373(22):2149-2160.
|
[7] |
Matsumoto M,Hashizume H,Tomishige T,et al.OPC-67683,a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice[J].PLoS Med,2006,3(11):2131-2144.
|
[8] |
Fujiwara M, Kawasaki M, Hariguchi N, et al. Mechanisms of resistance to delamanid,a drug for Mycobacterium tuberculosis[J].Tuberculosis,2018,108:186-194.
|
[9] |
Gler MT,Skripconoka V,Sanchez-Garavito E,et al.Delamanid for multidrug-resistant pulmonary tuberculosis[J].N Engl J Med,2012,366(23):2151-2160.
|
[10] |
Liu Y,Matsumoto M,Ishida H,et al.Delamanid:from discovery to its use for pulmonary multidrug-resistant tuberculosis(MDR-TB)[J].Tuberculosis,2018,111:20-30.
|
[11] |
Stover CK,Warrener P,Vandevanter DR,et al.A small-moleculenitroimidazopyran drug candidate for the treatment of tuberculosis[J].Nature,2000,405(6789):962-966.
|
[12] |
Singh R,Manjunatha U,Helena IMB,et al.PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release[J].Science,2008,322(5906):1392-1395.
|
[13] |
Lenaerts AJ,Veronica G,Marietta KS,et al.Preclinical testing of the nitroimidazopyran PA-824 for activity against Mycobacterium tuberculosis in a series of in vitro and in vivo models[J].Antimicrob Agents Chemother,2005,49(6):2294-2301.
|
[14] |
Sandeep T, Nuermberger E, Yoshimatsu T, et al. Bactericidal activity of the nitroimidazopyran PA-824 in a murine model of tuberculosis[J].Antimicrob Agents Chemother,2005,49(6):2289-2293.
|
[15] |
Diacon AH, Rodney D, Florian GB, et al. 14-day bactericidal activity of PA-824,bedaquiline,pyrazinamide,and moxifloxacin combinations:a randomised trial[J].Lancet,2012,380(9846):986-993.
|
[16] |
Nuermberger E,Tyagi S,Tasneen R,et al.Powerful bactericidal and sterilizing activity of a regimen containing PA-824,moxifloxacin,and pyrazinamide in a murine model of tuberculosis[J].Antimicrob Agents Chemother,2008,52(4):1522-1524.
|
[17] |
Nuermberger E,Rosenthal I,Tyagi S,et al.Combination chemotherapy with the nitroimidazopyran PA-824 and first-line drugs in a murine model of tuberculosis[J].Antimicrob Agents Chemother,2006,50(8):2621-2625.
|
[18] |
Tasneen R, Tyagi S, Williams K, et al. Enhanced bactericidal activity of rifampin and/or pyrazinamide when combined with PA-824 in a murine model of tuberculosis[J].Antimicrob Agents Chemother,2008,52(10):3664-3668.
|
[19] |
Sacksteder KA,Protopopova M,Barry CE,et al.Discovery and development of SQ109:a new antitubercular drug with a novel mechanism of action[J].Future Microbiol,2012,7(7):823-837.
|
[20] |
Chen P.Synergistic interactions of SQ109,a new ethylene diamine,with front-line antitubercular drugs in vitro[J].J Antimicrob Chemoth,2006,58(2):332-337.
|
[21] |
Reddy VM, Einck L, Andries K,et al. In vitro interactions between new antitubercular drug candidates SQ109 and TMC207[J].Antimicrob Agents Chemother,2010,54(7):2840-2846.
|
[22] |
Reddy VM,Dubuisson T,Einck L,et al.SQ109 and PNU-100480 interact to kill Mycobacterium tuberculosis in vitro[J].J Antimicrob Chemoth,2012,67(5):1163-1166.
|
[23] |
Piton J,Vocat A,Lupien A,et al.Structure-based drug design and characterization of sulfonyl-piperazine benzothiazinone inhibitors of DprE1 from Mycobacterium tuberculosis[J].Antimicrob Agents Chemother,2018,62(10):e00681-18.
|
[24] |
Brecik M,Centárová I,Mukherjee R,et al.DprE1 is a vulnerable tuberculosis drug target due to its cell wall localization[J].ACS Chem Biol,2015,10(7):1631-1636.
|
[25] |
Makarov V,Manina G,Mikusova K,et al.Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis[J].Science,2009,324(5928):801-804.
|
[26] |
Lechartier B,Hartkoorn RC,Cole ST.In vitro combination studies of benzothiazinone lead compound BTZ043 against Mycobacterium tuberculosis[J].Antimicrob Agents Chemother,2012,56(11):5790-5793.
|
[27] |
Makarov V,Lechartier B,Zhang M,et al.Towards a new combination therapy for tuberculosis with next generation benzothiazinones[J].Embo Mol Med,2014,6(3):372-383.
|
[28] |
Makarov V,Neres J,Hartkoorn RC,et al.The 8-pyrrole-benzothiazinones are noncovalent inhibitors of DprE1 from Mycobacterium tuberculosis[J].Antimicrob Agents Chemother,2015,59(8):4446-4452.
|
[29] |
Lechartier B,Cole ST.Mode of action of clofazimine and combination therapy with benzothiazinones against Mycobacterium tuberculosis[J].Antimicrob Agents Chemother,2015,59(8):4457-4463.
|
[30] |
Lupien A,Vocat A,Foo CS,et al.Optimized background regimen for treatment of active tuberculosis with the next-generation benzothiazinone Macozinone(PBTZ169)[J].Antimicrob Agents Chemother,2018,62(11):e00840-18.
|
[31] |
Working Group on New TB Drugs[EB/OL].[2019-09-11] .https://www.newtbdrugs.org/pipeline/clinical.
|
[32] |
Chatterji M,Shandil R,Manjunatha MR,et al.1,4-azaindole,a potential drug candidate for treatment of tuberculosis[J].Antimicrob Agents Chemother,2014,58(9):5325-5331.
|
[33] |
Lamprecht DA,Finin PM,Rahman MA,et al.Turning the respi-ratory flexibility of Mycobacterium tuberculosis against itself[J].Nat Commun,2016,7(1):12393.
|
[34] |
Kalia NP,Hasenoehrl EJ,Ab Rahman NB,et al.Exploiting the synthetic lethality between terminal respiratory oxidases to kill Mycobacterium tuberculosis and clear host infection[J].PNAS,2017,114(28):7426-7431.
|
[35] |
Guillemont J,Meyer C,Poncelet A,et al.Diarylquinolines,synthesis pathways and quantitative structure-activity relationship studies leading to the discovery of TMC207[J].Future Med Chem,2011,3(11):1345-1360.
|
[36] |
Ahmad N,Ahuja SD,Akkerman OW,et al.Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis:an individual patient data meta-analysis[J].Lancet,2018,392(10150):821-834.
|
[37] |
Abrahams KA,Cox JA,Spivey VL,et al.Identification of novel imidazo[1,2-a]pyridine inhibitors targeting M.tuberculosis QcrB[J].PLoS One,2012,7(12):e52951.
|
[38] |
Pethe K,Bifani P,Jang J,et al.Discovery of Q203,a potent clinical candidate for the treatment of tuberculosis[J].Nat Med,2013,19(9):1157-1160.
|
[39] |
Barbachyn MR,Hutchinson DK,Brickner SJ,et al.Identification of a novel oxazolidinone(U-100480)with potent antimycobacterial activity[J].J Med Chem,1996,39(3):680-685.
|
[40] |
Williams KN,Stover CK,Zhu T,et al.Promising antituberculosis activity of the oxazolidinone PNU-100480 relative to that of linezolid in a murine model[J].Antimicrob Agents Chemother,2009,53(4):1314-1319.
|
[41] |
Williams KN,Brickner SJ,Stover CK,et al.Addition of PNU-100480 to first-line drugs shortens the time needed to cure murine tuberculosis[J].Am J Resp Crit Care,2009,180(4):371-376.
|
[42] |
Wallis RS,Jakubiec WM,Kumar V,et al.Pharmacokinetics and whole-blood bactericidal activity against Mycobacterium tuberculosis of single doses of PNU-100480 in healthy volunteers[J].J Infect Dis,2010,202(5):745-751.
|
[43] |
Wallis RS,Jakubiec W,Kumar V,et al.Biomarker-assisted dose selection for safety and efficacy in early development of PNU-100480 for tuberculosis[J].Antimicrob Agents Chemother,2011,55(2):567-574.
|
[44] |
Li X,Hernandez V,Rock FL,et al.Discovery of a potent and specific M.tuberculosis leucyl-tRNA synthetase inhibitor:(S)-3-(aminomethyl)-4-chloro-7-(2-hydroxyethoxy)benzo[c][1,2] oxaborol-1(3H)-ol(GSK656)[J].J Med Chem,2017,60(19):8011-8026.
|
[45] |
Tenero D,Derimanov G,Carlton A,et al.First-time-in-human study and prediction of early bactericidal activity for GSK3036656,a potent leucyl-tRNA synthetase inhibitor for tuberculosis treatment[J].Antimicrob Agents Chemother,2019,63(8):e00240-19.
|
[46] |
Ralph AP,Kenangalem E,Waramori G,et al.High morbidity during treatment and residual pulmonary disability in pulmonary tuberculosis:under-recognised phenomena[J].PLoS One,2013,8(11):e80302.
|
[47] |
Willcox PA,Ferguson AD.Chronic obstructive airways disease following treated pulmonary tuberculosis[J].Resp Med,1989,83(3):195-198.
|
[48] |
Wallis RS,Maeurer M,Mwaba P,et al.Tuberculosis—advances in development of new drugs,treatment regimens,host-directed therapies,and biomarkers[J].Lancet Infect Dis,2016,16(4):e34-e46.
|
[1] | LI Linzhen, WEI Xi, LIU Lu, LI Yongjun, LIANG Jingyu. Chemical constituents from the stems of Clerodendrum trichotomum Thunb.[J]. Journal of China Pharmaceutical University, 2019, 50(5): 544-548. DOI: 10.11665/j.issn.1000-5048.20190506 |
[2] | LIN Qinghua, XU Jian, FENG Feng. Chemical constituents from the stems of Picrasma quassioides Bennet[J]. Journal of China Pharmaceutical University, 2017, 48(6): 675-679. DOI: 10.11665/j.issn.1000-5048.20170607 |
[3] | XU Yunhui, JIANG Xueyang, XU Jian, JIANG Renwang, ZHANG Jie, XIE Zijian, FENG Feng. Chemical constituents from Callicarpa kwangtungensis Chun[J]. Journal of China Pharmaceutical University, 2016, 47(3): 299-302. DOI: 10.11665/j.issn.1000-5048.20160309 |
[4] | YU Shule, MA Lin, WU Zhengfeng, ZHAO Shouxun, WANG Lei, YE Wencai, ZHANG Jian, YIN Zhiqi. Non-C21 steroids from the Rhizome of Cynanchum stauntonii[J]. Journal of China Pharmaceutical University, 2015, 46(4): 426-430. DOI: 10.11665/j.issn.1000-5048.20150407 |
[5] | MA Lin, ZHANG Rongfei, YU Shule, WU Zhengfeng, ZHAO Shouxun, Wang Lei, YE Wencai, ZHANG Jian, YIN Zhiqi. Chemical constituents of Fructus Gleditsiae Abnormalis[J]. Journal of China Pharmaceutical University, 2015, 46(2): 188-193. DOI: 10.11665/j.issn.1000-5048.20150209 |
[6] | LI Linzhen, WANG Menghua, SUN Jianbo, LIANG Jingyu. Chemical constituents from Aletris spicata[J]. Journal of China Pharmaceutical University, 2014, 45(2): 175-177. DOI: 10.11665/j.issn.1000-5048.20140208 |
[7] | CHANG Bo, XIAO Linjing, ZHANG Jian, ZHAO Shouxun, YE Wencai, YIN Zhiqi. Chemical constituents from Abies ernestii var.salouenensis[J]. Journal of China Pharmaceutical University, 2014, 45(1): 43-47. DOI: 10.11665/j.issn.1000-5048.20140107 |
[8] | LI Jiu-hui, CHEN Guang-ying, HAN Chang-ri, MO Zheng-rong, SONG Xiao-ping. Chemical constituents from the stems of Vatica mangachpoi Blanco[J]. Journal of China Pharmaceutical University, 2012, 43(1): 25-27. |
[9] | SUN Jing, YIN Zhi-qi, ZHANG Qing-wen, YE Wen-cai, WANG Yi-ta, ZHAO Shou-xun. Chemical constituents from ethyl acetate extract of Ganoderma lucidum[J]. Journal of China Pharmaceutical University, 2011, 42(3): 220-222. |
[10] | Chemical constituents from Senecio nemorensis.[J]. Journal of China Pharmaceutical University, 2010, 41(1): 26-28. |