Citation: | LIANG Tingting, WANG Wenjie, HE Guangchao, HE Guangchao, XU Yungen. Research progress of ERK small molecule inhibitors[J]. Journal of China Pharmaceutical University, 2020, 51(3): 260-269. DOI: 10.11665/j.issn.1000-5048.20200302 |
[1] |
. Bioorg Med Chem Lett, 2015, 25(2): 192-197.
|
[2] |
Wang X, Zhang PH. Advances in research on the modulation of autophagy by Ras/Raf/MEK/ERK signaling pathway[J]. J China Pharm Univ(中国药科大学学报), 2017, 48(1): 110-116.
|
[3] |
Samatar AA, Poulikakos PI. Targeting RAS-ERK signalling in cancer: promises and challenges[J]. Nat Rev Drug Discov, 2014, 13(12): 928-942.
|
[4] |
Yu ZT, Ye SQ, Hu GY, et al. The RAF-MEK-ERK pathway: targeting ERK to overcome obstacles to effective cancer therapy[J]. Future Med Chem, 2015, 7(3): 269-289.
|
[5] |
Uehling DE, Harris PA. Recent progress on MAP kinase pathway inhibitors[J]. Bioorg Med Chem Lett, 2015, 25(19): 4047-4056.
|
[6] |
Menon MB, Gaestel M. TPL2 meets p38MAPK: emergence of a novel positive feedback loop in inflammation[J]. Biochem J, 2016, 473(19): 2995-2999.
|
[7] |
Lei ZY, van Mil A, Brandt MM, et al. MicroRNA-132/212 family enhances arteriogenesis after hindlimb ischaemia through modulation of the Ras-MAPK pathway[J]. J Cell Mol Med, 2015, 19(8): 1994-2005.
|
[8] |
Kim EK, Choi EJ. Compromised MAPK signaling in human diseases: an update[J]. Arch Toxicol, 2015, 89(6): 867-882.
|
[9] |
Asati V, Mahapatra DK, Bharti SK. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives[J]. Eur J Med Chem, 2016, 109: 314-341.
|
[10] |
Caunt CJ, Sale MJ, Smith PD, et al. MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road[J]. Nat Rev Cancer, 2015, 15(10): 577-592.
|
[11] |
Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease[J]. Cell, 2017, 170(1): 17-33.
|
[12] |
Roskoski R
|
[13] |
Lavoie H, Therrien M. Regulation of RAF protein kinases in ERK signalling[J]. Nat Rev Mol Cell Biol, 2015, 16(5): 281-298.
|
[14] |
An S, Yang Y, Ward R, et al. Raf-interactome in tuning the complexity and diversity of Raf function[J]. FEBS J, 2015, 282(1): 32-53.
|
[15] |
Cseh B, Doma E, Baccarini M. “RAF” neighborhood: protein-protein interaction in the Raf/Mek/Erk pathway[J]. FEBS Lett, 2014, 588(15): 2398-2406.
|
[16] |
Okumura S, J?nne PA. Molecular pathways: the basis for rational combination using MEK inhibitors in KRAS-mutant cancers[J]. Clin Cancer Res, 2014, 20(16): 4193-4199.
|
[17] |
Taylor SS, Kornev AP. Protein kinases: evolution of dynamic regulatory proteins[J]. Trends Biochem Sci, 2011, 36(2): 65-77.
|
[18] |
Buscà R, Christen R, Lovern M, et al. ERK1 and ERK2 present functional redundancy in tetrapods despite higher evolution rate of ERK1[J]. BMC Evol Biol, 2015, 15: 179.
|
[19] |
Kidger AM, Sipthorp J, Cook SJ. ERK1/2 inhibitors: New weapons to inhibit the RAS-regulated RAF-MEK1/2-ERK1/2 pathway[J]. Pharmacol Ther, 2018, 187: 45-60.
|
[20] |
Roskoski R
|
[21] |
Buscà R, Pouysségur J, Lenormand P. ERK1 and ERK2 map kinases: specific roles or functional redundancy[J]? Front Cell Dev Biol, 2016, 4: 53.
|
[22] |
Yoon S, Seger R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions[J]. Growth Factors, 2006, 24(1): 21-44.
|
[23] |
Houles T, Roux PP. Defining the role of the RSK isoforms in cancer[J]. Semin Cancer Biol, 2018, 48: 53-61.
|
[24] |
Casalvieri KA, Matheson CJ, Backos DS, et al. Selective targeting of RSK isoforms in cancer[J]. Trends Cancer, 2017, 3(4): 302-312.
|
[25] |
Asano E, Maeda M, Hasegawa H, et al. Role of palladin phosphorylation by extracellular signal-regulated kinase in cell migration[J]. PLoS One, 2011, 6(12):
|
[26] |
Plotnikov A, Zehorai E, Procaccia S, et al. The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation[J]. Biochim Biophys Acta, 2011, 1813(9): 1619-1633.
|
[27] |
Hobbs GA, der CJ, Rossman KL. RAS isoforms and mutations in cancer at a glance[J]. J Cell Sci, 2016, 129(7): 1287-1292.
|
[28] |
Holderfield M, Deuker MM, McCormick F, et al. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond[J]. Nat Rev Cancer, 2014, 14(7): 455--467.
|
[29] |
Jetschke K, Viehweger H, Freesmeyer M, et al. Primary pineal malignant melanoma with B-Raf V600E mutation: a case report and brief review of the literature[J]. Acta Neurochir (Wien), 2015, 157(7): 1267-1270.
|
[30] |
Sogabe S, Togashi Y, Kato H, et al. MEK inhibitor for gastric cancer with MEK1 gene mutations[J]. Mol Cancer Ther, 2014, 13(12): 3098-3106.
|
[31] |
Nikolaev SI, Rimoldi D, Iseli C, et al. Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma[J]. Nat Genet, 2011, 44(2): 133-139.
|
[32] |
Murugan AK, Dong JL, Xie JW, et al. MEK1 mutations, but not ERK2 mutations, occur in melanomas and colon carcinomas, but none in thyroid carcinomas[J]. Cell Cycle, 2009, 8(13): 2122-2124.
|
[33] |
Arcila ME, Drilon A, Sylvester BE, et al. MAP2K1 (MEK1) mutations define a distinct subset of lung adenocarcinoma associated with smoking[J]. Clin Cancer Res, 2015, 21(8): 1935-1943.
|
[34] |
Roskoski R
|
[35] |
Jaiswal BS, Durinck S, Stawiski EW, et al. ERK mutations and amplification confer resistance to ERK-inhibitor therapy[J]. Clin Cancer Res, 2018, 24(16): 4044-4055.
|
[36] |
Qin JZ, Xin H, Nickoloff BJ. Specifically targeting ERK1 or ERK2 kills melanoma cells[J]. J Transl Med, 2012, 10: 15.
|
[37] |
Hatzivassiliou G, Liu B, O''''Brien C, et al. ERK inhibition overcomes acquired resistance to MEK inhibitors[J]. Mol Cancer Ther, 2012, 11(5): 1143-1154.
|
[38] |
Blake JF, Gaudino JJ, De Meese J, et al. Discovery of 5, 6, 7, 8-tetrahydropyrido[3, 4-d]pyrimidine inhibitors of Erk2[J]. Bioorg Med Chem Lett, 2014, 24(12): 2635-2639.
|
[39] |
Ren L, Grina J, Moreno D, et al. Discovery of highly potent, selective, and efficacious small molecule inhibitors of ERK1/2[J]. J Med Chem, 2015, 58(4): 1976-1991.
|
[40] |
Blake JF, Burkard M, Chan J, et al. Discovery of (S)-1-(1-(4-Chloro-3-fluorophenyl)-2-hydroxyethyl)-4-(2-((1-methyl-1H-pyrazol-5-yl)amino)pyrimidin-4-yl)pyridin-2(1H)-one (GDC-0994), an extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor in early clinical development[J]. J Med Chem, 2016, 59(12): 5650-5660.
|
[41] |
Germann UA, Furey BF, Markland W, et al. Targeting the MAPK signaling pathway in cancer: promising preclinical activity with the novel selective ERK1/2 inhibitor BVD-523 (ulixertinib)[J]. Mol Cancer Ther, 2017, 16(11): 2351-2363.
|
[42] |
Germann U, Furey B, Roix J, et al. The selective ERK inhibitor BVD-523 is active in models of MAPK pathway-dependent cancers, including those with intrinsic and acquired drug resistance[J]. Cancer Res, 2015, 75: 4693.
|
[43] |
U.S. National Library of Meidcine. A study of LYA3214996 administered alone or in combination with other agents in participants with advanced/metastatic cancer[EB/OL]. (
|
[44] |
Chaikuad A, Tacconi EM, Zimmer J, et al. A unique inhibitor binding site in ERK1/2 is associated with slow binding kinetics[J]. Nat Chem Biol, 2014, 10(10): 853-860.
|
[45] |
Boga SB, Deng YQ, Zhu L, et al. MK-8353: discovery of an orally bioavailable dual mechanism ERK inhibitor for oncology[J]. ACS Med Chem Lett, 2018, 9(7): 761-767.
|
[46] |
U.S. National Library of Meidcine. Study of MK-8353 in combination with pembrolizumab (MK-3475) in participants with advanced malignancies (MK-8353-013)[EB/OL]. (
|
[47] |
U.S. National Library of Meidcine. Study of MK-8353 + Selumetinib in Advanced/Metastatic Solid Tumors (MK-8353-014)[EB/OL]. (
|
[48] |
U.S. National Library of Meidcine. Safety and PK Study of CC-90003 in Relapsed/Refractory Solid Tumors[EB/OL]. (
|
[49] |
Aronchik I, Dai YM, Labenski M, et al. Efficacy of a covalent ERK1/2 inhibitor, CC-90003, in KRAS-mutant cancer models reveals novel mechanisms of response and resistance[J]. Mol Cancer Res, 2019, 17(2): 642-654.
|
[50] |
Ohori M, Kinoshita T, Okubo M, et al. Identification of a selective ERK inhibitor and s tructural determination of the inhibitor-ERK2 complex[J]. Biochem Biophys Res Commun, 2005, 336(1): 357-363.
|
[51] |
Ohori M, Takeuchi M, Maruki R, et al. FR180204, a novel and selective inhibitor of extracellular signal-regulated kinase, ameliorates collagen-induced arthritis in mice[J]. Naunyn Schmiedebergs Arch Pharmacol, 2007, 374(4): 311-316.
|
[52] |
Sreekanth GP, Chuncharunee A, Sirimontaporn A, et al. Role of ERK1/2 signaling in dengue virus-induced liver injury[J]. Virus Res, 2014, 188: 15-26.
|
[53] |
Aronov AM, Baker C, Bemis GW, et al. Flipped out: structure-guided design of selective pyrazolylpyrrole ERK inhibitors[J]. J Med Chem, 2007, 50(6): 1280-1287.
|
[54] |
Aronov AM, Tang Q, Martinez-Botella G, et al. Structure-guided design of potent and selective pyrimidylpyrrole inhibitors of extracellular signal-regulated kinase (ERK) using conformational control[J]. J Med Chem, 2009, 52(20): 6362-6368.
|
[55] |
Krepler C, Xiao M, Sproesser K, et al. Personalized preclinical trials in BRAF inhibitor-resistant patient-derived xenograft models identify second-line combination therapies[J]. Clin Cancer Res, 2016, 22(7): 1592-1602.
|
[56] |
Liu B, Fu LL, Zhang C, et al. Computational design, chemical synthesis, and biological evaluation of a novel ERK inhibitor (BL-EI001) with apoptosis-inducing mechanisms in breast cancer[J]. Oncotarget, 2015, 6(9): 6762-6775.
|
[57] |
Ji DZ, Zhang LZ, Zhu QH, et al. Discovery of potent, orally bioavailable ERK1/2 inhibitors with isoindolin-1-one structure by structure-based drug design[J]. Eur J Med Chem, 2019, 164: 334-341.
|