Citation: | LI Zhiyan, LIU Jie, LI Bingyan, JIANG Cheng. Design, synthesis and evaluation of peptidomimetics targeting the polo-box domain of polo-like kinase 1[J]. Journal of China Pharmaceutical University, 2020, 51(3): 287-294. DOI: 10.11665/j.issn.1000-5048.20200305 |
[1] |
. Cell Mol Life Sci, 2010, 67(12): 1957-1970.
|
[2] |
de Cárcer G, Manning G, Malumbres M. From Plk1 to Plk5: functional evolution of polo-like kinases[J]. Cell Cycle, 2011, 10(14): 2255-2262.
|
[3] |
Strebhardt K, Ullrich A. Targeting polo-like kinase 1 for cancer therapy[J]. Nat Rev Cancer, 2006, 6(4): 321-330.
|
[4] |
Lowery DM, Lim D, Yaffe MB. Structure and function of Polo-like kinases[J]. Oncogene, 2005, 24(2): 248-259.
|
[5] |
Golsteyn RM, Mundt KE, Fry AM, et al. Cell cycle regulation of the activity and subcellular localization of Plk1, a human protein kinase implicated in mitotic spindle function[J]. J Cell Biol, 1995, 129(6): 1617-1628.
|
[6] |
Lee KS, Burke TR
|
[7] |
Ma S, Liu MA, Yuan YL, et al. The serum-inducible protein kinase Snk is a G1 phase polo-like kinase that is inhibited by the calcium- and integrin-binding protein CIB[J]. Mol Cancer Res, 2003, 1(5): 376-384.
|
[8] |
Ma S, Charron J, Erikson RL. Role of Plk2 (Snk) in mouse development and cell proliferation[J]. Mol Cell Biol, 2003, 23(19): 6936-6943.
|
[9] |
Burns TF, Fei PW, Scata KA, et al. Silencing of the novel p53 target gene Snk/Plk2 leads to mitotic catastrophe in paclitaxel (Taxol)-exposed cells[J]. Mol Cell Biol, 2003, 23(16): 5556-5571.
|
[10] |
Xie SQ, Xie B, Lee MY, et al. Regulation of cell cycle checkpoints by polo-like kinases[J]. Oncogene, 2005, 24(2): 277-286.
|
[11] |
Kong KL, Lu S, Gao YP, et al. Advances on the study of PLK1 inhibitors as antitumor agents[J]. J China Pharm Univ(中国药科大学学报), 2011, 42(1): 9-15.
|
[12] |
Yao AH, Chang YJ, Jiang C, et al. Research progress of Polo-like kinase 1 inhibitors targeting Polo-box domain[J]. J China Pharm Univ(中国药科大学学报), 2016, 47(1): 1-8.
|
[13] |
Yun SM, Moulaei T, Lim D, et al. Structural and functional analyses of minimal phosphopeptides targeting the polo-box domain of polo-like kinase 1[J]. Nat Struct Mol Biol, 2009, 16(8): 876-882.
|
[14] |
Liu F, Park JE, Qian WJ, et al. Peptoid-peptide hybrid ligands targeting the polo box domain of polo-like kinase 1[J]. ChemBioChem, 2012, 13(9): 1291-1296.
|
[15] |
Murugan RN, Park JE, Lim D, et al. Development of cyclic peptomer inhibitors targeting the polo-box domain of polo-like kinase 1[J]. Bioorg Med Chem, 2013, 21(9): 2623-2634.
|
[16] |
Qian WJ, Park JE, Lee KS, et al. Non-proteinogenic amino acids in the pThr-2 position of a pentamer peptide that confer high binding affinity for the polo box domain (PBD) of polo-like kinase 1 (Plk1)[J]. Bioorg Med Chem Lett, 2012, 22(24): 7306-7308.
|
[17] |
Ahn M, Han YH, Park JE, et al. A new class of peptidomimetics targeting the polo-box domain of Polo-like kinase 1[J]. J Med Chem, 2015, 58(1): 294-304.
|
[18] |
Hymel D, TRJrBurke. Phosphatase-stable phosphoamino acid mimetics that enhance binding affinities with the polo-box domain of polo-like Kinase 1[J]. ChemMedChem, 2017, 12(3): 202-206.
|
[19] |
Zhao XZ, Hymel D, Burke TR
|
[20] |
Chen YH, Li ZY, Liu Y, et al. Identification of novel and selective non-peptide inhibitors targeting the polo-box domain of polo-like kinase 1[J]. Bioorg Chem, 2018, 81: 278-288.
|
[21] |
Li ZY, Zhang ZG, Chen YH, et al. Design, synthesis and evaluation of d-amino acid-containing peptidomimetics targeting the polo-box domain of polo-like kinase 1[J]. Bioorg Chem, 2019, 85: 534-540.
|
[22] |
Li ZY, Zhang ZG, Sun HY, et al. Identification of novel peptidomimetics targeting the polo-box domain of polo-like kinase 1[J]. Bioorg Chem, 2019, 91: 103148.
|
[1] | SHANG Feiyang, LIU Chengbo, TAN Hongzhou, HE Bing, HE Liqin. Design, synthesis and antiplatelet aggregation activity of 3-acetyl-7-hydroxycoumarin derivatives[J]. Journal of China Pharmaceutical University, 2024, 55(3): 367-374. DOI: 10.11665/j.issn.1000-5048.2023072901 |
[2] | HU Yuheng, SUN Jie, YANG Jie, WANG Xiaojing. Synthesis and in vitro hypoglycemic activity of 3-(4′-benzoyl amino-phenyl)-coumarin derivatives[J]. Journal of China Pharmaceutical University, 2019, 50(2): 168-174. DOI: 10.11665/j.issn.1000-5048.20190206 |
[3] | YANG Guoxun, XIONG Juan, HU Jinfeng. 2017′s advanced natural products chemistry researches in China(2)[J]. Journal of China Pharmaceutical University, 2018, 49(6): 637-645. DOI: 10.11665/j.issn.1000-5048.20180601 |
[4] | YANG Guoxun, XIONG Juan, HU Jinfeng. 2017′s advanced natural products chemistry researches in China(1)[J]. Journal of China Pharmaceutical University, 2018, 49(5): 511-520. DOI: 10.11665/j.issn.1000-5048.20180501 |
[5] | YANG Rui, ZHU Yi, WANG Yin, MA Wenqi, WANG Xin, HAN Xiqiong, LIU Naifeng. Recent progress in autophagy and vascular calcification[J]. Journal of China Pharmaceutical University, 2018, 49(4): 401-406. DOI: 10.11665/j.issn.1000-5048.20180403 |
[6] | JIN Yue, WU Xuri, CHEN Yijun. Applications of glycosyltransferases in the improvement of druggability of natural products[J]. Journal of China Pharmaceutical University, 2017, 48(5): 529-535. DOI: 10.11665/j.issn.1000-5048.20170504 |
[7] | YU Sulan, YU Xiu, KOU Junping. Advances in the mechanism research of natural products against acute lung injury[J]. Journal of China Pharmaceutical University, 2016, 47(4): 397-403. DOI: 10.11665/j.issn.1000-5048.20160403 |
[8] | XIANG Min, ZHANG Yaqin, WU Pingping, GAO Zhenyu. Effect of block of AGEs-RAGE pathway on the migration of VSMCs[J]. Journal of China Pharmaceutical University, 2016, 47(2): 199-203. DOI: 10.11665/j.issn.1000-5048.20160212 |
[10] | YANG Ya-Bo, WANG Min, LIANG Yan, LIANG Jing-Yu. Transgalactosylation of Isotaxiresinol by[J]. Journal of China Pharmaceutical University, 2002, (6). |