• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
TAO Yingjun, WU Jie, LIU Chang. Application of proteomics in diabetes and its complications[J]. Journal of China Pharmaceutical University, 2020, 51(3): 368-373. DOI: 10.11665/j.issn.1000-5048.20200315
Citation: TAO Yingjun, WU Jie, LIU Chang. Application of proteomics in diabetes and its complications[J]. Journal of China Pharmaceutical University, 2020, 51(3): 368-373. DOI: 10.11665/j.issn.1000-5048.20200315

Application of proteomics in diabetes and its complications

Funds: This study was supported by the National Natural Science Foundation of China ( No. 81673340)
More Information
  • Received Date: October 29, 2019
  • Revised Date: May 10, 2020
  • Proteomics is one of the most advanced fields and hotspots in the research of various diseases in recent years. Its development has provided a new research direction for the early diagnosis and treatment of diabetes and has achieved some research results. Early diagnosis is helpful to control the progression of the disease or even avoid surgical treatment, which is of great significance for improving the prognosis of patients. This paper reviews the current status and prospects of proteomic technology and its applications in diabetes as well as its complications with a prospect of the impact of the rapid development of proteomics on diabetes and its positive role in discovering more diabetes biomarkers. In the future research, more attention should be paid to the interconnections between biomarkers.
  • [1]
    . Wiley Interdiscip Rev Syst Biol Med, 2019, 11(5): e1450.
    [2]
    Vaudel M, Barsnes H, R?der H, et al. Using proteomics bioinformatics tools and resources in proteogenomic studies[J]. Adv Exp Med Biol, 2016, 926: 65-75.
    [3]
    Joubert R, Strub JM, Zugmeyer S, et al. Identification by mass spectrometry of two-dimensional gel electrophoresis-separated proteins extracted from lager brewing yeast[J]. Electrophoresis, 2001, 22(14): 2969-2982.
    [4]
    Chen GD, Pramanik BN. Application of LC/MS to proteomics studies: current status and future prospects[J]. Drug Discov Today, 2009, 14(9/10): 465-471.
    [5]
    Cs?sz, Deák E, Kalló G, et al. Diabetic retinopathy: proteomic approaches to help the differential diagnosis and to understand the underlying molecular mechanisms[J]. J Proteomics, 2017, 150: 351-358.
    [6]
    Haythorne E, Rohm M, van de Bunt M, et al. Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic β-cells[J]. Nat Commun, 2019, 10(1): 2474.
    [7]
    Mohan V, Radha V. Precision diabetes is slowly becoming a reality[J]. Med Princ Pract, 2019, 28(1): 1-9.
    [8]
    Wang Y, An HY, Liu T, et al. Metformin improves mitochondrial respiratory activity through activation of AMPK[J]. Cell Rep, 2019, 29(6): 1511-1523.e5.
    [9]
    Khan RMM, Chua ZJY, Tan JC, et al. From pre-diabetes to diabetes: diagnosis, treatments and translational research[J]. Medicina (Kaunas), 2019, 55(9): E546.
    [10]
    Metz TO, Qian WJ, Jacobs JM, et al. Application of proteomics in the discovery of candidate protein biomarkers in a diabetes autoantibody standardization program sample subset[J]. J Proteome Res, 2008, 7(2): 698-707.
    [11]
    Zhang QB, Fillmore TL, Schepmoes AA, et al. Serum proteomics reveals systemic dysregulation of innate immunity in type 1 diabetes[J]. J Exp Med, 2013, 210(1): 191-203.
    [12]
    Soggiu A, Piras C, Bonizzi L, et al. A discovery-phase urine proteomics investigation in type 1 diabetes[J]. Acta Diabetol, 2012, 49(6): 453-464.
    [13]
    Huth C, von Toerne C, Schederecker F, et al. Protein markers and risk of type 2 diabetes and prediabetes: a targeted proteomics approach in the Kora F4/FF4 study[J]. Eur J Epidemiol, 2019, 34(4): 409-422.
    [14]
    Lietzén N, Hirvonen K, Honkimaa A, et al. Coxsackievirus B persistence modifies the proteome and the secretome of pancreatic ductal cells[J]. iScience, 2019, 19: 340-357.
    [15]
    Lutty GA. Effects of diabetes on the eye[J]. Invest Ophthalmol Vis Sci, 2013, 54(14): ORSF81.
    [16]
    Rangasamy S, McGuire PG, Das A. Diabetic retinopathy and inflammation: novel therapeutic targets[J]. Middle East Afr J Ophthalmol, 2012, 19(1): 52-59.
    [17]
    Whitehead M, Osborne A, Widdowson PS, et al. Angiopoietins in diabetic retinopathy: current understanding and therapeutic potential[J]. J Diabetes Res, 2019, 2019: 5140521.
    [18]
    Jin J, Min H, Kim SJ, et al. Development of diagnostic biomarkers for detecting diabetic retinopathy at early stages using quantitative proteomics[J]. J Diabetes Res, 2016, 2016: 6571976.
    [19]
    Torok Z, Peto T, Csosz E, et al. Tear fluid proteomics multimarkers for diabetic retinopathy screening[J]. BMC Ophthalmol, 2013, 13(1): 40.
    [20]
    Hirao Y, Saito S, Fujinaka H, et al. Proteome profiling of diabetic mellitus patient urine for discovery of biomarkers by comprehensive MS-based proteomics[J]. Proteomes, 2018, 6(1): E9.
    [21]
    Campion CG, Sanchez-Ferras O, Batchu SN. Potential role of serum and urinary biomarkers in diagnosis and prognosis of diabetic nephropathy[J]. Can J Kidney Health Dis, 2017, 4: 2054358117705371.
    [22]
    Yoon JJ, Park JH, Kim HJ, et al. Dianthus superbus improves glomerular fibrosis and renal dysfunction in diabetic nephropathy model[J]. Nutrients, 2019, 11(3): E553.
    [23]
    Thippakorn C, Schaduangrat N, Nantasenamat C. Proteomic and bioinformatic discovery of biomarkers for diabetic nephropathy[J]. EXCLI J, 2018, 17: 312-330.
    [24]
    de Boer IH, Rue TC, Cleary PA, et al. Long-term renal outcomes of patients with type 1 diabetes mellitus and microalbuminuria: an analysis of the diabetes control and complications trial/epidemiology of diabetes interventions and complications cohort[J]. Arch Intern Med, 2011, 171(5): 412-420.
    [25]
    Son MK, Yoo HY, Kwak BO, et al. Regression and progression of microalbuminuria in adolescents with childhood onset diabetes mellitus[J]. Ann Pediatr Endocrinol Metab, 2015, 20(1): 13-20.
    [26]
    van JA, Scholey JW, Konvalinka A. Insights into diabetic kidney disease using urinary proteomics and bioinformatics[J]. J Am Soc Nephrol, 2017, 28(4): 1050-1061.
    [27]
    Moresco RN, de Carvalho JAM. Applying proteomics to diagnosis of diabetic kidney disease[J]. Expert Rev Proteomics, 2017, 14(10): 841-843.
    [28]
    Harpole M, Davis J, Espina V. Current state of the art for enhancing urine biomarker discovery[J]. Expert Rev Proteomics, 2016, 13(6): 609-626.
    [29]
    Papale M, di Paolo S, Vocino G, et al. Proteomics and diabetic nephropathy: what have we learned from a decade of clinical proteomics studies[J]? J Nephrol, 2014, 27(3): 221-228.
    [30]
    Wende AR. Post-translational modifications of the cardiac proteome in diabetes and heart failure[J]. Proteomics Clin Appl, 2016, 10(1): 25-38.
    [31]
    Dewey S, Sohal M, Gomes AV. Proteomic analysis of Akita mice reveals 9 proteins altered during early stages of diabetic cardiomyopathy[J]. Biophys J, 2013, 104(2): 313a-314a.
    [32]
    Pai YW, Lin CH, Lin SY, et al. Reconfirmation of newly discovered risk factors of diabetic peripheral neuropathy in patients with type 2 diabetes: a case-control study[J]. PLoS One, 2019, 14(7): e0220175.
    [33]
    Hosseini A, Abdollahi M. Diabetic neuropathy and oxidative stress: therapeutic perspectives[J]. Oxid Med Cell Longev, 2013, 2013: 168039.
    [34]
    Zhang TJ, Gao YB, Gong YB, et al. Tang-Luo-ning improves mitochondrial antioxidase activity in dorsal root Ganglia of diabetic rats: a proteomics study[J]. Biomed Res Int, 2017, 2017: 8176089.
    [35]
    Singh A, Subramani E, Datta Ray C, et al. Proteomic-driven biomarker discovery in gestational diabetes mellitus: a review[J]. J Proteomics, 2015, 127(Pt A): 44-49.
    [36]
    Kim SM, Park JS, Norwitz ER, et al. Identification of proteomic biomarkers in maternal plasma in the early second trimester that predict the subsequent development of gestational diabetes[J]. Reprod Sci, 2012, 19(2): 202-209.
    [37]
    Seyhan AA, Carini C. Are innovation and new technologies in precision medicine paving a new era in patients centric care [J]?J Transl Med, 2019, 17(1): 114.
    [38]
    Vitzthum F, Behrens F, Anderson NL, et al. Proteomics: from basic research to diagnostic application. A review of requirements & needs[J]. J Proteome Res, 2005, 4(4): 1086-1097.
    [39]
    Colhoun HM, Marcovecchio ML. Biomarkers of diabetic kidney disease[J]. Diabetologia, 2018, 61(5): 996-1011.
  • Related Articles

    [1]WANG Jingqi, WANG Ye, ZHANG Yi, LIANG Juncheng, DENG Yanping, HANG Taijun, SONG Min. Metabolomic study on clinical staging of methamphetamine detoxification by LC-QTOF-MS[J]. Journal of China Pharmaceutical University, 2022, 53(3): 314-322. DOI: 10.11665/j.issn.1000-5048.20220309
    [2]ZHANG Liuxiao, OBORE Nathan, YU Tianyi, QIAN Huiqin, ZHANG Yuan, YU Hong. Research progress in biological markers of perinatal depression[J]. Journal of China Pharmaceutical University, 2022, 53(1): 120-124. DOI: 10.11665/j.issn.1000-5048.20220118
    [3]HE Mingzhe, PENG Ying, WANG Guangji, A Jiye, ZHENG Yiwen, SUN Jianguo. Mechanism of sodium salicylate-induced damage to HEI-OC1 cells based on metabonomics[J]. Journal of China Pharmaceutical University, 2021, 52(5): 566-572. DOI: 10.11665/j.issn.1000-5048.20210508
    [4]LI Xiaoshi, WU Xunxun, ZHENG Zuguo, YANG Hua, LI Ping. Advances of long noncoding RNAs in myocardial fibrosis[J]. Journal of China Pharmaceutical University, 2020, 51(6): 646-654. DOI: 10.11665/j.issn.1000-5048.20200602
    [5]WU Yubing, YIN Lifang, QIN Chao. Clinical application and detection of matrix metalloproteinases in diagnosis[J]. Journal of China Pharmaceutical University, 2020, 51(5): 614-621. DOI: 10.11665/j.issn.1000-5048.20200514
    [6]MU Jinming, LIU Yue, ZHANG Fangfang, JIN Liang. Relationship between circular RNA and type 2 diabetes and its clinical application[J]. Journal of China Pharmaceutical University, 2020, 51(3): 374-378. DOI: 10.11665/j.issn.1000-5048.20200316
    [7]GE Yiran, YANG Jian, LI Yuyan, XU Yungen. Advances of near-infrared fluorescent probes for detection of Alzheimer′s disease[J]. Journal of China Pharmaceutical University, 2020, 51(2): 138-151. DOI: 10.11665/j.issn.1000-5048.20200203
    [8]YIN Kunpeng, ZHENG Hao, XIE Binxin, LI Ping, ZHANG Lei, FAN Yong, ZHU Wei, QI Lianwen. Clinical metabolomics in diagnosis and therapy of coronary artery disease[J]. Journal of China Pharmaceutical University, 2017, 48(6): 629-634. DOI: 10.11665/j.issn.1000-5048.20170601
    [9]ZHONG Chunmei, MA Yan, WANG Yandong, YANG Wei, HAN Zhong, SUN Jingjing, LIN Baoqin. Effect of Danhong Huayu Koufuye combined with insulin on prevention and progression of early diabetic nephropathy in rats[J]. Journal of China Pharmaceutical University, 2013, 44(6): 568-572. DOI: 10.11665/j.issn.1000-5048.20130616
    [10]LI Chen, YUAN Linhua, MA Xueqin, LIU Xiaoquan, XI Tao. Variation of cardiovascular risk biomarkers in type 2 diabetes mellitus[J]. Journal of China Pharmaceutical University, 2013, 44(3): 257-262. DOI: 10.11665/j.issn.1000-5048.20130314
  • Cited by

    Periodical cited type(8)

    1. 王忠利. 糖尿病并发症的药物防治研究进展. 中国城乡企业卫生. 2023(06): 39-41 .
    2. 卢薇,林丹,王挺挺,陈旭,周鹏. 柴芍六君子汤加减治疗2型糖尿病的临床疗效观察. 中药材. 2023(04): 1026-1029 .
    3. 李链,上官钰,戴勇. 蛋白组学在肾脏疾病中的应用. 国际泌尿系统杂志. 2022(04): 767-770 .
    4. 李链,上官钰,戴勇. 蛋白组学在肾脏疾病中的应用. 国际泌尿系统杂志. 2022(04): 767-770 .
    5. 郭笑丹,席小雯,田林涛,徐杰. 利拉鲁肽 德谷胰岛素联合二甲双胍在难治性2型糖尿病治疗中的应用效果观察. 山西医药杂志. 2022(15): 1760-1763 .
    6. 操映倩,周立分,余宏,薛亚楠,艾志福,罗小泉,章常华. 基于转录组学和蛋白质组学分析小檗碱抗糖尿病慢性炎症机制. 中国新药杂志. 2021(05): 424-433 .
    7. 陈凡,葛莉,黄萍萍,江心泳,赖玉婷,庞书勤. 系统评价胎盘差异表达蛋白对妊娠糖尿病大鼠模型胎盘生长发育的影响. 中国实验动物学报. 2021(03): 343-353 .
    8. 王银虹. 早期营养干预对糖尿病足患者肾功能的影响. 航空航天医学杂志. 2021(07): 783-785 .

    Other cited types(4)

Catalog

    Article views (323) PDF downloads (567) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return