Citation: | ZHOU Yeshu, WANG Yanmei, ZHANG Beiyuan, WU Shuaicong, YANG Lei, YIN Lifang. Research progress of inorganic nanomaterials in drug delivery system[J]. Journal of China Pharmaceutical University, 2020, 51(4): 394-405. DOI: 10.11665/j.issn.1000-5048.20200403 |
[1] |
Bogart LK, Pourroy G, Murphy CJ, et al. Nanoparticles for imaging, sensing, and therapeutic intervention[J].ACS Nano, 2014, 8(4): 3107-3122.
|
[2] |
Cho EC, Glaus C, Chen J, et al. Inorganic nanoparticle-based contrast agents for molecular imaging[J]. Trends Mol Med, 2010, 16(12): 561-573.
|
[3] |
Panwar N, Soehartono AM, Chan KK, et al. Nanocarbons for biology and medicine: sensing, imaging, and drug delivery[J]. Chem Rev, 2019, 119(16): 9559-9656.
|
[4] |
Markovic ZM, Harhaji-Trajkovic LM, Todorovic-Markovic BM, et al. In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes[J].Biomaterials, 2011, 32(4): 1121-1129.
|
[5] |
Miao W, Shim G, Lee S, et al. Safety and tumor tissue accumulation of pegylated graphene oxide nanosheets for co-delivery of anticancer drug and photosensitizer[J].Biomaterials, 2013, 34(13): 3402-3410.
|
[6] |
Islami M, Zarrabi A, Tada S, et al. Controlled quercetin release from high-capacity-loading hyperbranched polyglycerol-functionalized graphene oxide[J]. Int J Nanomed, 2018, 13: 6059-6071.
|
[7] |
Liu Z, Zhang J, Tian Y, et al. Targeted delivery of reduced graphene oxide nanosheets using multifunctional ultrasound nanobubbles for visualization and enhanced photothermal therapy[J].Int J Nanomed, 2018, 13: 7859-7872.
|
[8] |
Bhatnagar I, Venkatesan J, Kiml SK. Polymer functionalized single walled carbon nanotubes mediated drug delivery of gliotoxin in cancer cells[J].J Biomed Nanotechnol, 2014, 10(1): 120-130.
|
[9] |
Wu H, Shi H, Zhang H, et al. Prostate stem cell antigen antibody-conjugated multiwalled carbon nanotubes for targeted ultrasound imaging and drug delivery[J].Biomaterials, 2014, 35(20): 5369-5380.
|
[10] |
Chen D, Wang C, Jiang F, et al. In vitro and in vivo photothermally enhanced chemotherapy by single-walled carbon nanohorns as a drug delivery system[J]. J Mater Chem B, 2014, 2(29): 4726-4732.
|
[11] |
Yang J, Su H, Sun W, et al. Dual chemodrug-loaded single-walled carbon nanohorns for multimodal imaging-guided chemo-photothermal therapy of tumors and lung metastases[J]. Theranostics, 2018, 8(7): 1966-1984.
|
[12] |
Chien YH, Chan KK, Anderson T, et al. Advanced near-infrared light-responsive nanomaterials as therapeutic platforms for cancer therapy[J]. Adv Ther, 2019, 2(3): 1800090.
|
[13] |
Wang H, Di J, Sun Y, et al. Biocompatible PEG-chitosan@carbon dots hybrid nanogels for two-photon fluorescence imaging, near-infrared light/pH dual-responsive drug carrier, and synergistic therapy[J]. Adv Funct Mater, 2015, 25(34): 5537-5547.
|
[14] |
Tang J, Kong B, Wu H, et al. Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging[J]. Adv Mater, 2013, 25(45): 6569-6574.
|
[15] |
Jung YK, Shin E, Kim BS. Cell nucleus-targeting zwitterionic carbon dots[J]. Sci Rep, 2015, 5: 18807-18807.
|
[16] |
Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery[J]. Adv Mater, 2012, 24(12): 1504-1534.
|
[17] |
Mellaerts R, Mols R, Jammaer JA, et al. Increasing the oral bioavailability of the poorly water soluble drug itraconazole with ordered mesoporous silica[J]. Eur J Pharm Biopharm, 2008, 69(1): 223-230.
|
[18] |
Slowing II, Trewyn BG, Lin VS. Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins[J]. J Am Chem Soc, 2007, 129(28): 8845-8849.
|
[19] |
Xia T, Kovochich M, Liong M, et al. Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs[J]. ACS Nano, 2009, 3(10): 3273-3286.
|
[20] |
Zhang Z, Wang L, Wang J, et al. Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment[J]. Adv Mater, 2012, 24(11): 1418-1423.
|
[21] |
Qi C, Lin J, Fu H, et al. Calcium-based biomaterials for diagnosis, treatment, and theranostics[J]. Chem Soc Rev, 2018, 47(2): 357-403.
|
[22] |
Li WM, Chiang CS, Huang WC, et al. Amifostine-conjugated pH-sensitive calcium phosphate-covered magnetic-amphiphilic gelatin nanoparticles for controlled intracellular dual drug release for dual-targeting in HER-2-overexpressing breast cancer[J]. J Control Release, 2015, 220(Pt A): 107-118.
|
[23] |
Zhang J, Sun X, Shao R, et al. Polycation liposomes combined with calcium phosphate nanoparticles as a non-viral carrier for siRNA delivery[J]. J Drug Deliv Sci Tec, 2015, 30(Part A): 1-6.
|
[24] |
Chen J, Sun X, Shao R, et al. VEGF siRNA delivered by polycation liposome-encapsulated calcium phosphate nanoparticles for tumor angiogenesis inhibition in breast cancer[J]. Int J nanomed, 2017, 12: 6075-6088.
|
[25] |
Liu Y, Wang T, He F, et al. An efficient calcium phosphate nanoparticle-based nonviral vector for gene delivery[J]. Int J nanomed, 2011, 6: 721-727.
|
[26] |
Qiu C, Wei W, Sun J, et al. Systemic delivery of siRNA by hyaluronan-functionalized calcium phosphate nanoparticles for tumor-targeted therapy[J]. Nanoscale, 2016, 8(26): 13033-13044.
|
[27] |
Zhao Y, Lu Y, Hu Y, et al. Synthesis of superparamagnetic CaCO3 mesocrystals for multistage delivery in cancer therapy[J]. Small, 2010, 6(21): 2436-2442.
|
[28] |
Shafiu KA, Ismail M, Tengku Ibrahim TA, et al. A pH-sensitive, biobased calcium carbonate aragonite nanocrystal as a novel anticancer delivery system[J]. Biol Med Res Int, 2013, 2013(3): 587451-587451.
|
[29] |
Wu JL, He XY, Jiang PY, et al. Biotinylated carboxymethyl chitosan/CaCO3 hybrid nanoparticles for targeted drug delivery to overcome tumor drug resistance[J]. RSC Adv, 2016, 6(73): 69083-69093.
|
[30] |
Wu J, Zhu YJ, Cao SW, et al. Hierachically nanostructured mesoporous spheres of calcium silicate hydrate: surfactant-free sonochemical synthesis and drug-delivery system with ultrahigh drug-loading capacity[J]. Adv Mater, 2010, 22(6): 749-753.
|
[31] |
Wu C, Chang J, Fan W. Bioactive mesoporous calcium-silicate nanoparticles with excellent mineralization ability, osteostimulation, drug-delivery and antibacterial properties for filling apex roots of teeth[J]. J Mater Chem, 2012, 22(33): 16801-16809.
|
[32] |
Yuan Z, Lu F, Peng M, et al. Selective colorimetric detection of hydrogen sulfide based on primary amine-active ester cross-linking of gold nanoparticles[J]. Anal Chem, 2015, 87(14): 7267-7273.
|
[33] |
Hostetler MJ, Green SJ, Stokes JJ, et al. Monolayers in three dimensions: synthesis and electrochemistry of ω-functionalized alkanethiolate-stabilized gold cluster compounds[J]. J Am Chem Soc, 1996, 118(17): 4212-4213.
|
[34] |
Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chem Rev, 2004, 104(1): 293-346.
|
[35] |
Mieszawska AJ, Mulder WJM, Fayad ZA, et al. Multifunctional gold nanoparticles for diagnosis and therapy of disease[J]. Mol Pharm, 2013, 10(3): 831-847.
|
[36] |
Tomuleasa C, Soritau O, Orza A, et al. Gold nanoparticles conjugated with cisplatin/doxorubicin/capecitabine lower the chemoresistance of hepatocellular carcinoma-derived cancer cells[J]. J Gastrointestin Liver Dis, 2012, 21(2): 187-196.
|
[37] |
Heo DN, Yang DH, Moon HJ, et al. Gold nanoparticles surface-functionalized with paclitaxel drug and biotin receptor as theranostic agents for cancer therapy[J]. Biomaterials, 2012, 33(3): 856-866.
|
[38] |
Lee SE, Sasaki DY, Perroud TD, et al. Biologically functional cationic phospholipid-gold nanoplasmonic carriers of RNA[J]. J Am Chem Soc, 2009, 131(39): 14066-14074.
|
[39] |
Shim MS, Kim CS, Ahn YC, et al. Combined multimodal optical imaging and targeted gene silencing using stimuli-transforming nanotheragnostics[J]. J Am Chem Soc, 2010, 132(24): 8316-8324.
|
[40] |
Gilchrist RK, Medal R, Shorey WD, et al. Selective inductive heating of lymph nodes[J]. Ann Surg, 1957, 146(4): 596-606.
|
[41] |
Meyers PH, Cronic F, Nice CM, et al. Experimental approach in the use and magnetic control of metallic iron particles in the lymphatic and vascular system of dogs as a contrast and isotopic agent[J]. Am J Roentgenol Radium Ther Nucl Med, 1963, 90: 1068-1077.
|
[42] |
Shah BP, Pasquale N, De G, et al. Core-shell nanoparticle-based peptide therapeutics and combined hyperthermia for enhanced cancer cell apoptosis[J]. ACS Nano, 2014, 8(9): 9379-9387.
|
[43] |
Chen ML, He YJ, Chen XW, et al. Quantum dots conjugated with Fe3O4-filled carbon nanotubes for cancer-targeted imaging and magnetically guided drug delivery[J]. Langmuir, 2012, 28(47): 16469-16476.
|
[44] |
Hafeli UO. Magnetically modulated therapeutic systems[J]. Int J Pharm, 2004, 277(1/2): 19-24.
|
[45] |
Chen H, Langer R. Magnetically-responsive polymerized liposomes as potential oral delivery vehicles[J]. Pharm Res, 1997, 14(4): 537-540.
|
[46] |
Edelman ER, Langer R. Optimization of release from magnetically controlled polymeric drug release devices[J]. Biomaterials, 1993, 14(8): 621-626.
|
[47] |
Bae KH, Lee K, Kim C, et al. Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging[J]. Biomaterials, 2011, 32(1): 176-184.
|
[48] |
Zheng Y, Zhang H, Hu Y, et al. MnO nanoparticles with potential application in magnetic resonance imaging and drug delivery for myocardial infarction[J]. Int J nanomed, 2018, 13: 6177-6188.
|
[49] |
Yang G, Xu L, Chao Y, et al. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses[J]. Nat commun, 2017, 8(1): 902.
|
[50] |
Wang F, Li C, Cheng J, et al. Recent advances on inorganic nanoparticle-based cancer therapeutic agents[J]. Inter J Env Res Pub Heal, 2016, 13(12): 1182.
|
[51] |
Zhang P, Steelant W, Kumar M, et al. Versatile photosensitizers for photodynamic therapy at infrared excitation[J]. J Am Chem Soc, 2007, 129(15): 4526-4527.
|
[52] |
Zeng L, Luo L, Pan Y, et al. In vivo targeted magnetic resonance imaging and visualized photodynamic therapy in deep-tissue cancers using folic acid-functionalized superparamagnetic-upconversion nanocomposites[J]. Nanoscale, 2015, 7(19): 8946-8954.
|
[53] |
Cui S, Yin D, Chen Y, et al. In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct[J]. ACS Nano, 2013, 7(1): 676-688.
|
[54] |
Wang C, Tao H, Cheng L, et al. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles[J]. Biomaterials, 2011, 32(26): 6145-6154.
|
[55] |
Matea CT, Mocan T, Tabaran F, et al. Quantum dots in imaging, drug delivery and sensor applications[J]. Int J nanomed, 2017, 12: 5421-5431.
|
[56] |
Bagalkot V, Zhang L, Levy-Nissenbaum E, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer[J]. Nano Lett, 2007, 7(10): 3065-3070.
|
[57] |
Byrne S, Corr S, Rakovich T, et al. Optimisation of the synthesis and modification of CdTe quantum dots for enhanced live cell imaging[J]. J Mater Chem, 2006, 16(28): 2896.
|
[58] |
Cai X, Luo Y, Zhang W, et al. pH-sensitive ZnO quantum dots-doxorubicin nanoparticles for lung cancer targeted drug delivery[J]. ACS Appl Mater Interfaces, 2016, 8(34): 22442-22450.
|
[59] |
Bwatanglang IB, Mohammad F, Yusof NA, et al. In vivo tumor targeting and anti-tumor effects of 5-fluororacil loaded, folic acid targeted quantum dot system[J]. J Colloid Interface Sci, 2016, 480: 146-158.
|
[60] |
Singh RD, Shandilya R, Bhargava A, et al. Quantum dot based nano-biosensors for detection of circulating cell free miRNAs in lung carcinogenesis: from biology to clinical translation[J]. Front Genet, 2018, 9: 616.
|
[61] |
Hirsch LR, Stafford RJ, Bankson JA, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance[J]. Proc Natl Acad Sci U S A, 2003, 100(23): 13549-13554.
|
[62] |
Anselmo AC, Mitragotri S. A review of clinical translation of inorganic nanoparticles[J]. AAPS J, 2015, 17(5): 1041-1054.
|
[1] | FENG Yang, XU Xiao, MO Ran. Advances in lymphatic targeted drug delivery system for treatment of tumor metastasis[J]. Journal of China Pharmaceutical University, 2020, 51(4): 425-432. DOI: 10.11665/j.issn.1000-5048.20200406 |
[2] | CHEN Ye, YIN Jun, YAO Wenbing, GAO Xiangdong. Advances of DNA-based nanomaterials in tumor therapy[J]. Journal of China Pharmaceutical University, 2020, 51(4): 406-417. DOI: 10.11665/j.issn.1000-5048.20200404 |
[3] | YANG Ruocong, DUAN Feipeng, CHAO Jiahong, TIAN Pengpeng, YAN Zhiyong, LI Shaojing. Advances of microRNA activity in innate immunity[J]. Journal of China Pharmaceutical University, 2017, 48(4): 396-406. DOI: 10.11665/j.issn.1000-5048.20170403 |
[4] | CHEN Xing, KANG Yang, WU Jun. Advances in biodegradable functional polymers based protein drug delivery system[J]. Journal of China Pharmaceutical University, 2017, 48(2): 142-149. DOI: 10.11665/j.issn.1000-5048.20170203 |
[5] | JIANG Lu, CHEN Dandan, SUN Minjie, PING Qineng, ZHANG Can. Advances of wax matrix tablets[J]. Journal of China Pharmaceutical University, 2016, 47(4): 497-502. DOI: 10.11665/j.issn.1000-5048.20160418 |
[6] | YAO Guilin, WANG Haiyong, LU Tao. Advances of the uricosuric drugs[J]. Journal of China Pharmaceutical University, 2016, 47(4): 491-496. DOI: 10.11665/j.issn.1000-5048.20160417 |
[7] | ZHANG Fangrong, WANG Wei. Advances of synthetic lipoproteins as drug nanovectors[J]. Journal of China Pharmaceutical University, 2016, 47(2): 148-157. DOI: 10.11665/j.issn.1000-5048.20160204 |
[8] | CHEN Qingyu, ZHOU Jianping, HUO Meirong. Advances in the nanotechnology-based drug delivery systems of silymarin[J]. Journal of China Pharmaceutical University, 2015, 46(3): 376-384. DOI: 10.11665/j.issn.1000-5048.20150320 |
[9] | WANG Ruoning, LIU Congyan, ZHOU Jianping, CHEN Jian, WANG Wei. Advances in the research of lipoprotein-based nano scale drug delivery systems[J]. Journal of China Pharmaceutical University, 2014, 45(1): 10-16. DOI: 10.11665/j.issn.1000-5048.20140102 |
[10] | XU Si-sheng, ZHANG Hui-bin, ZHOU Jin-pei, HUANG Jian-jun. Advances of new antidiabetic drugs[J]. Journal of China Pharmaceutical University, 2011, 42(2): 97-106. |