Citation: | CHEN Ye, YIN Jun, YAO Wenbing, GAO Xiangdong. Advances of DNA-based nanomaterials in tumor therapy[J]. Journal of China Pharmaceutical University, 2020, 51(4): 406-417. DOI: 10.11665/j.issn.1000-5048.20200404 |
[1] |
Mohammad IS, He W, Yin L. Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR[J]. Biomed Pharmacother, 2018, 100: 335-348.
|
[2] |
Liu J, Zhang Y, Zeng Q, et al. Delivery of RIPK4 small interfering RNA for bladder cancer therapy using natural halloysite nanotubes[J]. Sci Adv, 2019, 5(9): eaaw6499.
|
[3] |
Bhaskaran V, Yao Y, Bei F, et al. Engineering, delivery, and biological validation of artificial microRNA clusters for gene therapy applications[J]. Nat Protoc, 2019, 14(12): 3538-3553.
|
[4] |
Xu J, Sun J, Ho PY, et al. Creatine based polymer for codelivery of bioengineered microRNA and chemodrugs against breast cancer lung metastasis[J]. Biomaterials, 2019, 210: 25-40.
|
[5] |
Chen L, Zhou L, Wang C, et al. Tumor-targeted drug and CpG delivery system for phototherapy and docetaxel-enhanced immunotherapy with polarization toward M1-type macrophages on triple negative breast cancers[J]. Adv Mater, 2019, 31(52):
|
[6] |
Mirza Z, Karim S. Nanoparticles-based drug delivery and gene therapy for breast cancer: recent advancements and future challenges[J]. Semin Cancer Biol, 2019. doi:10.1016/j.semcancer. 2019. 10. 020.
|
[7] |
Zhao H, Zhao B, Wu L, et al. Amplified cancer immunotherapy of a surface-engineered antigenic microparticle vaccine by synergistically modulating tumor microenvironment[J]. ACS Nano, 2019, 13(11): 12553-12566.
|
[8] |
Liu JN, Bu W, Shi J. Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia[J]. Chem Rev, 2017, 117(9): 6160-6224.
|
[9] |
Seeman NC. Nucleic acid junctions and lattices[J]. J Theor Biol, 1982, 99(2): 237-247.
|
[10] |
Zuo H, Mao C. A minimalist's approach for DNA nanoconstructions[J]. Adv Drug Deliv Rev, 2019, 147: 22-28.
|
[11] |
Mohsen MG, Kool ET. The discovery of rolling circle amplification and rolling circle transcription[J]. Acc Chem Res, 2016, 49(11): 2540-2550.
|
[12] |
Hong CA, Jang B, Jeong EH, et al. Self-assembled DNA nanostructures prepared by rolling circle amplification for the delivery of siRNA conjugates[J]. Chem Commun (Camb), 2014, 50(86): 13049-13051.
|
[13] |
Yata T, Takahashi Y, Tan M, et al. Efficient amplification of self-gelling polypod-like structured DNA by rolling circle amplification and enzymatic digestion[J]. Sci Rep, 2015, 5: 14979.
|
[14] |
Rothemund PW. Folding DNA to create nanoscale shapes and patterns[J]. Nature, 2006, 440(7082): 297-302.
|
[15] |
Wei B, Dai M, Yin P. Complex shapes self-assembled from single-stranded DNA tiles[J]. Nature, 2012, 485(7400): 623-626.
|
[16] |
Seeman NC. DNA in a material world[J]. Nature, 2003, 421(6921): 427-431.
|
[17] |
Ouyang C, Zhang S, Xue C, et al. Precision-guided missile-like DNA nanostructure containing warhead and guidance control for aptamer-based targeted drug delivery into cancer cells in vitro and in vivo[J]. J Am Chem Soc, 2020, 142(3): 1265-1277.
|
[18] |
Di Z, Zhao J, Chu H, et al. An acidic-microenvironment-driven DNA nanomachine enables specific ATP imaging in the extracellular milieu of tumor[J]. Adv Mater, 2019, 31(33):
|
[19] |
Dutta PK, Zhang Y, Blanchard AT, et al. Programmable multivalent DNA-origami tension probes for reporting cellular traction forces[J]. Nano Lett, 2018, 18(8): 4803-4811.
|
[20] |
Liu Z, Pei H, Zhang L, et al. Mitochondria-targeted DNA nanoprobe for real-time imaging and simultaneous quantification of Ca2+ and pH in neurons[J]. ACS Nano, 2018, 12(12): 12357-12368.
|
[21] |
Setyawati MI, Kutty RV, Leong DT. DNA nanostructures carrying stoichiometrically definable antibodies[J]. Small, 2016, 12(40): 5601-5611.
|
[22] |
Wu SY, Chou HY, Yuh CH, et al. Radiation-sensitive dendrimer-based drug delivery system[J]. Adv Sci (Weinh), 2018, 5(2): 1700339.
|
[23] |
Ge Z, Guo L, Wu G, et al. DNA origami-enabled engineering of ligand-drug conjugates for targeted drug delivery[J]. Small, 2020, 16(16):
|
[24] |
Liu J, Song L, Liu S, et al. A tailored DNA nanoplatform for synergistic RNAi-/chemotherapy of multidrug-resistant tumors[J]. Angew Chem Int Ed Engl, 2018, 57(47): 15486-15490.
|
[25] |
Zhao H, Yuan X, Yu J, et al. Magnesium-stabilized multifunctional DNA nanoparticles for tumor-targeted and pH-responsive drug delivery[J]. ACS Appl Mater Interfaces, 2018, 10(18): 15418-15427.
|
[26] |
Liu J, Song L, Liu S, et al. A DNA-based nanocarrier for efficient gene delivery and combined cancer therapy[J]. Nano Lett, 2018, 18(6): 3328-3334.
|
[27] |
Jiang Q, Song C, Nangreave J, et al. DNA origami as a carrier for circumvention of drug resistance[J]. J Am Chem Soc, 2012, 134(32): 13396-13403.
|
[28] |
Zhang Q, Jiang Q, Li N, et al. DNA origami as an in vivo drug delivery vehicle for cancer therapy[J]. ACS Nano, 2014, 8(7): 6633-6643.
|
[29] |
Zhang H, Ma Y, Xie Y, et al. A controllable aptamer-based self-assembled DNA dendrimer for high affinity targeting, bioimaging and drug delivery[J]. Sci Rep, 2015, 5: 10099.
|
[30] |
Yao C, Yuan Y, Yang D. Magnetic DNA nanogels for targeting delivery and multistimuli-triggered release of anticancer drugs[J]. ACS Applied Bio Materials, 2018, 1(6): 2012-2020.
|
[31] |
Ma Y, Wang Z, Ma Y, et al. A telomerase-responsive DNA icosahedron for precise delivery of platinum nanodrugs to cisplatin-resistant cancer[J]. Angew Chem Int Ed Engl, 2018, 57(19): 5389-5393.
|
[32] |
Wu T, Liu J, Liu M, et al. A nanobody-conjugated DNA nanoplatform for targeted platinum-drug delivery[J]. Angew Chem Int Ed Engl, 2019, 58(40): 14224-14228.
|
[33] |
Liu J, Wu T, Lu X, et al. A self-assembled platform based on branched DNA for sgRNA/Cas9/antisense delivery[J]. J Am Chem Soc, 2019, 141(48): 19032-19037.
|
[34] |
Wen AM, Steinmetz NF. Design of virus-based nanomaterials for medicine, biotechnology, and energy[J]. Chem Soc Rev, 2016, 45(15): 4074-4126.
|
[35] |
Lee H, Lytton-Jean AK, Chen Y, et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery[J]. Nat Nanotechnol, 2012, 7(6): 389-393.
|
[36] |
Roh YH, Lee JB, Shopsowitz KE, et al. Layer-by-layer assembled antisense DNA microsponge particles for efficient delivery of cancer therapeutics[J]. ACS Nano, 2014, 8(10): 9767-9780.
|
[37] |
Chen G, Liu D, He C, et al. Enzymatic synthesis of periodic DNA nanoribbons for intracellular pH sensing and gene silencing[J]. J Am Chem Soc, 2015, 137(11): 3844-3851.
|
[38] |
Hu Q, Li H, Wang L, et al. DNA nanotechnology-enabled drug delivery systems[J]. Chem Rev, 2019, 119(10): 6459-6506.
|
[39] |
Rattanakiat S, Nishikawa M, Funabashi H, et al. The assembly of a short linear natural cytosine-phosphate-guanine DNA into dendritic structures and its effect on immunostimulatory activity[J]. Biomaterials, 2009, 30(29): 5701-5706.
|
[40] |
Qu Y, Yang J, Zhan P, et al. Self-assembled DNA dendrimer nanoparticle for efficient delivery of immunostimulatory CpG motifs[J]. ACS Appl Mater Interfaces, 2017, 9(24): 20324-20329.
|
[41] |
Li J, Pei H, Zhu B, et al. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides[J]. ACS Nano, 2011, 5(11): 8783-8789.
|
[42] |
Ouyang X, Li J, Liu H, et al. Rolling circle amplification-based DNA origami nanostructrures for intracellular delivery of immunostimulatory drugs[J]. Small, 2013, 9(18): 3082-3087.
|
[43] |
Schuller VJ, Heidegger S, Sandholzer N, et al. Cellular immunostimulation by CpG-sequence-coated DNA origami structures[J]. ACS Nano, 2011, 5(12): 9696-9702.
|
[44] |
Wang C, Sun W, Wright G, et al. Inflammation-triggered cancer immunotherapy by programmed delivery of CpG and anti-PD1 antibody[J]. Adv Mater, 2016, 28(40): 8912-8920.
|
[45] |
Zhuang X, Ma X, Xue X, et al. A photosensitizer-loaded DNA origami nanosystem for photodynamic therapy[J]. ACS Nano, 2016, 10(3): 3486-3495.
|
[46] |
Chang K, Tang Y, Fang X, et al. Incorporation of porphyrin to pi-conjugated backbone for polymer-dot-sensitized photodynamic therapy[J]. Biomacromolecules, 2016, 17(6): 2128-2136.
|
[47] |
Park J, Jiang Q, Feng D, et al. Size-controlled synthesis of porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy[J]. J Am Chem Soc, 2016, 138(10): 3518-3525.
|
[48] |
Shieh YA, Yang SJ, Wei MF, et al. Aptamer-based tumor-targeted drug delivery for photodynamic therapy[J]. ACS Nano, 2010, 4(3): 1433-1442.
|
[49] |
Yang Y, Zhu W, Feng L, et al. G-quadruplex-based nanoscale coordination polymers to modulate tumor hypoxia and achieve nuclear-targeted drug delivery for enhanced photodynamic therapy[J]. Nano Lett, 2018, 18(11): 6867-6875.
|
[50] |
Auvinen H, Zhang H, Nonappa, et al. Protein coating of DNA nanostructures for enhanced stability and immunocompatibility[J]. Adv Healthc Mater, 2017, 6(18):1700692.
|
1. |
闫锐珂,徐泓婧,王莉丽. 结构DNA纳米技术在疫苗设计合成及应用领域的研究进展. 现代预防医学. 2023(13): 2485-2490 .
![]() |