Citation: | XING Xuyang, WANG Xiaochun, HE Wei. Advances in research on tumor immunotherapy and its drug development[J]. Journal of China Pharmaceutical University, 2021, 52(1): 10-19. DOI: 10.11665/j.issn.1000-5048.20210102 |
[1] |
. Cell, 2019, 176(3): 677.
|
[2] |
Pham T, Roth S, Kong J, et al. An update on immunotherapy for solid tumors: a review[J]. Ann Surg Oncol, 2018, 25(11): 3404-3412.
|
[3] |
Chang CH, Qiu J, O''Sullivan D, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression[J]. Cell, 2015, 162(6): 1229-1241.
|
[4] |
Klener P, Jr., Otahal P, Lateckova L, et al. Immunotherapy approaches in cancer treatment[J]. Curr Pharm Biotechnol, 2015, 16(9): 771-781.
|
[5] |
Liu YH, Zang XY, Wang JC, et al. Diagnosis and management of immune related adverse events (irAEs) in cancer immunotherapy[J]. Biomedecine Pharmacother, 2019, 120: 109437.
|
[6] |
Weiner GJ. Building better monoclonal antibody-based therapeutics[J]. Nat Rev Cancer, 2015, 15(6): 361-370.
|
[7] |
Sedykh SE, Prinz VV, Buneva VN, et al. Bispecific antibodies: design, therapy, perspectives[J]. Drug Des Devel Ther, 2018, 12: 195-208.
|
[8] |
Labrijn AF, Janmaat ML, Reichert JM, et al. Bispecific antibodies: a mechanistic review of the pipeline[J]. Nat Rev Drug Discov, 2019, 18(8): 585-608.
|
[9] |
Lindau D, Gielen P, Kroesen M, et al. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells[J]. Immunology, 2013, 138(2): 105-115.
|
[10] |
Qin H, Lerman B, Sakamaki I, et al. Generation of a new therapeutic peptide that depletes myeloid-derived suppressor cells in tumor-bearing mice[J]. Nat Med, 2014, 20(6): 676-681.
|
[11] |
Liu C, Workman CJ, Vignali DA. Targeting regulatory T cells in tumors[J]. Febs J, 2016, 283(14): 2731-2748.
|
[12] |
de Coa?a YP, Wolodarski M, Poschke I, et al. Ipilimumab treatment decreases monocytic MDSCs and increases CD8 effector memory T cells in long-term survivors with advanced melanoma[J]. Oncotarget, 2017, 8(13): 21539-21553.
|
[13] |
Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition[J]. Am J Clin Oncol, 2016, 39(1): 98-106.
|
[14] |
Abdin SM, Zaher DM, Arafa EA, et al. Tackling cancer resistance by immunotherapy: updated clinical impact and safety of PD-1/PD-L1 inhibitors[J]. Cancers (Basel), 2018, 10(2):
|
[15] |
Iwai Y, Ishida M, Tanaka Y, et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade[J]. Proc Natl Acad Sci USA, 2002, 99(19): 12293-12297.
|
[16] |
Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy[J]. Blood, 2018, 131(1): 58-67.
|
[17] |
Syn NL, Teng MWL, Mok TSK, et al. De-novo and acquired resistance to immune checkpoint targeting[J]. Lancet Oncol, 2017, 18(12): e731-e741.
|
[18] |
Dong HD, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion[J]. Nat Med, 2002, 8(8): 793-800.
|
[19] |
Sul J,Blumenthal GM,Jiang XP, et al. FDA approval summary: pembrolizumab for the treatment of patients with metastatic non-small cell lung cancer whose tumors express programmed death-ligand 1[J]. Oncologist, 2016, 21(5): 643-650.
|
[20] |
Ning YM, Suzman D, Maher VE, et al. FDA approval summary: atezolizumab for the treatment of patients with progressive advanced urothelial carcinoma after platinum-containing chemotherapy[J]. Oncologist, 2017, 22(6): 743-749.
|
[21] |
Michot JM, Bigenwald C, Champiat S, et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review[J]. Eur J Cancer, 2016, 54: 139-148.
|
[22] |
Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia[J]. N Engl J Med, 2018, 378(5): 439-448.
|
[23] |
Locke FL, Ghobadi A, Jacobson CA, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial[J]. Lancet Oncol, 2019, 20(1): 31-42.
|
[24] |
Frey N, Porter D. Cytokine release syndrome with chimeric antigen receptor T cell therapy[J]. Biol Blood Marrow Transplant, 2019, 25(4): e123-e127.
|
[25] |
Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma[J]. N Engl J Med, 2017, 377(26): 2531-2544.
|
[26] |
Ji TJ, Lang JY, Ning B, et al. Enhanced natural killer cell immunotherapy by rationally assembling fc fragments of antibodies onto tumor membranes[J]. Adv Mater, 2019, 31(6):
|
[27] |
Chiu J, Ernst DM, Keating A. Acquired natural killer cell dysfunction in the tumor microenvironment of classic Hodgkin lymphoma[J]. Front Immunol, 2018, 9: 267.
|
[28] |
Ibrahim EC, Guerra N, Lacombe MJ, et al. Tumor-specific up-regulation of the nonclassical class I HLA-G antigen expression in renal carcinoma[J]. Cancer Res, 2001, 61(18): 6838-6845.
|
[29] |
Hu Y, Tian ZG, Zhang C. Chimeric antigen receptor (CAR)-transduced natural killer cells in tumor immunotherapy[J]. Acta Pharmacol Sin, 2018, 39(2): 167-176.
|
[30] |
Han JF, Chu JH, Keung Chan W, et al. CAR-engineered NK cells targeting wild-type EGFR and EGFRvIII enhance killing of glioblastoma and patient-derived glioblastoma stem cells[J]. Sci Rep, 2015, 5: 11483.
|
[31] |
Burger MC, Zhang C, Harter PN, et al. CAR-engineered NK cells for the treatment of glioblastoma: turning innate effectors into precision tools for cancer immunotherapy[J]. Front Immunol, 2019, 10: 2683.
|
[32] |
Li Y, Hermanson DL, Moriarity BS, et al. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity[J]. Cell Stem Cell, 2018, 23(2): 181-192.e5.
|
[33] |
Liu E, Marin D, Banerjee P, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors[J]. N Engl J Med, 2020, 382(6): 545-553.
|
[34] |
Hu Y, Tian ZG, Zhang C. Natural killer cell-based immunotherapy for cancer: advances and prospects[J]. Engineering, 2019, 5(1): 106-114.
|
[35] |
Song Q, Zhang CD, Wu XH. Therapeutic cancer vaccines: From initial findings to prospects[J]. Immunol Lett, 2018, 196: 11-21.
|
[36] |
Bowen WS, Svrivastava AK, Batra L, et al. Current challenges for cancer vaccine adjuvant development[J]. Expert Rev Vaccines, 2018, 17(3): 207-215.
|
[37] |
van der Burg SH, Arens R, Ossendorp F, et al. Vaccines for established cancer: overcoming the challenges posed by immune evasion[J]. Nat Rev Cancer, 2016, 16(4): 219-233.
|
[38] |
Aldous AR, Dong JZ. Personalized neoantigen vaccines: a new approach to cancer immunotherapy[J]. Bioorg Med Chem, 2018, 26(10): 2842-2849.
|
[39] |
Chen FJ, Zou ZY, Du J, et al. Neoantigen identification strategies enable personalized immunotherapy in refractory solid tumors[J]. J Clin Invest, 2019, 129(5): 2056-2070.
|
[40] |
Hilf N, Kuttruff-Coqui S, Frenzel K, et al. Actively personalized vaccination trial for newly diagnosed glioblastoma[J]. Nature, 2019, 565(7738): 240-245.
|
[41] |
Keskin DB, Anandappa AJ, Sun J, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial[J]. Nature, 2019, 565(7738): 234-239.
|
[42] |
Zang R, Jiang T, Zeng TZ, et al. Advances of combined immunotherapy in tumor[J]. J China Pharm Univ (中国药科大学学报), 2018, 49(4): 383-391.
|
[43] |
Sahin U, ?Türeci. Personalized vaccines for cancer immunotherapy[J]. Science, 2018, 359(6382): 1355-1360.
|
[44] |
Hennessy ML, Bommareddy PK, Boland G, et al. Oncolytic immunotherapy[J]. Surg Oncol Clin N Am, 2019, 28(3): 419-430.
|
[45] |
Bommareddy PK, Shettigar M, Kaufman HL. Integrating oncolytic viruses in combination cancer immunotherapy[J]. Nat Rev Immunol, 2018, 18(8): 498-513.
|
[46] |
Breitbach CJ, Bell JC, Hwang TH, et al. The emerging therapeutic potential of the oncolytic immunotherapeutic Pexa-Vec (JX-594)[J]. Oncolytic Virother, 2015, 4: 25-31.
|
[47] |
Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs[J]. Nat Rev Drug Discov, 2015, 14(9): 642-662.
|
[48] |
Rosewell Shaw A, Suzuki M. Oncolytic viruses partner with T-cell therapy for solid tumor treatment[J]. Front Immunol, 2018, 9: 2103.
|
[49] |
Russell L, Peng KW, Russell SJ, et al. Oncolytic viruses: priming time for cancer immunotherapy[J]. BioDrugs, 2019, 33(5): 485-501.
|
[50] |
Tsun A, Miao XN, Wang CM, et al. Oncolytic immunotherapy for treatment of cancer[J]. Adv Exp Med Biol, 2016, 909: 241-283.
|
[51] |
Yl?sm?ki E, Cerullo V. Design and application of oncolytic viruses for cancer immunotherapy[J]. Curr Opin Biotechnol, 2020, 65: 25-36.
|
[52] |
Qin S, Xu LP, Yi M, et al. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4[J]. Mol Cancer, 2019, 18(1): 155.
|
[53] |
Xin X, Pei X, Yang X, et al. Rod-shaped active drug particles enable efficient and safe gene delivery[J]. Adv Sci (Weinh), 2017, 4(11): 1700324.
|
[54] |
Xin XF, Teng C, Du XQ, et al. Drug-delivering-drug platform-mediated potent protein therapeutics via a non-endo-lysosomal route[J]. Theranostics, 2018, 8(13): 3474-3489.
|
[55] |
Xin XF, Du XQ, Xiao QQ, et al. Drug nanorod-mediated intracellular delivery of microRNA-101 for self-sensitization via autophagy inhibition[J]. Nano-Micro Lett, 2019, 11(1): 1-16.
|
[56] |
Ma LY, Dichwalkar T, Chang JYH, et al. Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor[J]. Science, 2019, 365(6449): 162-168.
|
[1] | MU Yao, ZHAO Huimin, LIU Haochen, LIU Xiaoquan. Advances in drug development for Alzheimer’s disease[J]. Journal of China Pharmaceutical University, 2024, 55(6): 816-825. DOI: 10.11665/j.issn.1000-5048.2024010202 |
[2] | WANG Shihao, LIU Lifeng, DING Yang, LI Suxin. Research progress of pH-responsive drug delivery systems in cancer immunotherapy[J]. Journal of China Pharmaceutical University, 2024, 55(4): 522-529. DOI: 10.11665/j.issn.1000-5048.2024011902 |
[3] | CUI Zhenzhen, ZHAO Yifan, SUN Yu, Meng Jiayi, KANG Di, HU Lihong. Research progress of drugs for cancer immunotherapy based on CCL2/CCR2 signaling axis[J]. Journal of China Pharmaceutical University, 2024, 55(1): 36-44. DOI: 10.11665/j.issn.1000-5048.2023112904 |
[4] | CHEN Feihong, ZHAO Deming, GOU Shaohua. Research progress on the antitumor effects of platinum-based chemo-immunotherapies[J]. Journal of China Pharmaceutical University, 2024, 55(1): 26-35. DOI: 10.11665/j.issn.1000-5048.2023120201 |
[5] | LIU Yanhong, CHEN Liqing, ZHANG Xintong, GAO Zhonghao, HUANG Wei. Research progress of tumor immunomodulation strategies based on nanodrug delivery system[J]. Journal of China Pharmaceutical University, 2023, 54(1): 5-14. DOI: 10.11665/j.issn.1000-5048.2023021501 |
[6] | ZHANG Yu, YAN Fang, XIAO Yibei. Development of VISTA in tumor immunotherapy[J]. Journal of China Pharmaceutical University, 2022, 53(4): 400-409. DOI: 10.11665/j.issn.1000-5048.20220403 |
[7] | YAO Zheng, LI Zihan, GAO Liming, HU Xing, CHEN Yan, PAN Wenqi, LI Qian. Advances of research on CAR-T cell immunotherapy for solid tumors[J]. Journal of China Pharmaceutical University, 2021, 52(4): 496-504. DOI: 10.11665/j.issn.1000-5048.20210413 |
[8] | ZHANG Jing. Analysis on research and development of global cardiovascular drugs in the past 6 years[J]. Journal of China Pharmaceutical University, 2018, 49(6): 760-765. DOI: 10.11665/j.issn.1000-5048.20180619 |
[9] | WANG Juan, LIAO Hong. Advances in drug research and development through directed differentiation of stem cells[J]. Journal of China Pharmaceutical University, 2011, 42(3): 193-197. |
[10] | Application of pharmacometrics in drug development and therapeutic drug monitoring[J]. Journal of China Pharmaceutical University, 2010, 41(1): 91-96. |
1. |
吴娅芳,胡展驰,王毅,权春善. 细菌外膜囊泡在疫苗领域的应用研究进展. 工业微生物. 2024(01): 100-106 .
![]() | |
2. |
宁华汉,李芊芊,吴哲丹,李晓飞. 程序性死亡配体-1与OX40L在NK/T细胞淋巴瘤中的表达及临床意义. 锦州医科大学学报. 2024(02): 80-85 .
![]() | |
3. |
孙晶莹,李研,黄晓燕,靳占奎,徐翠香,常乐,王建华. 链霉亲和素-人粒细胞巨噬细胞集落刺激因子融合蛋白的制备与活性鉴定. 陕西医学杂志. 2023(01): 3-6+22 .
![]() | |
4. |
成晓霞,王子见,何凤琴,成瀛. 活性氧在红缘拟层孔菌杀伤白血病细胞中的作用研究. 西北大学学报(自然科学版). 2023(01): 68-76 .
![]() | |
5. |
孙彦顺,姜诗瑶,杨东,崔钰,刘青,于莉莉. 卡瑞利珠单抗注射液临床用药特征分析. 武警医学. 2023(04): 325-329 .
![]() | |
6. |
彭丞,陈嘉斌,柴可群,严楷蕾. 肠道菌群在肿瘤应用中的研究进展. 实用肿瘤杂志. 2023(03): 290-293 .
![]() | |
7. |
王欣欣,闫振宇,苏博. 基于TCGA数据库分析肌动蛋白结合蛋白1在头颈部鳞状细胞癌中的表达及对预后的影响. 中国卫生检验杂志. 2023(13): 1621-1624 .
![]() | |
8. |
白紫合,李娟,吕雅蕾. Her2低表达晚期乳腺癌药物治疗的研究进展. 河北医科大学学报. 2023(07): 860-865 .
![]() | |
9. |
孙彦顺,王陵,姜诗瑶,杨东,刘青,于莉莉. 基于真实世界的肿瘤免疫治疗药物PD-1/PD-L1抑制剂使用情况分析. 中国医科大学学报. 2023(09): 769-774 .
![]() | |
10. |
吴丛宇,周悦,上官璐茜,杨雅妮,王晶雅,余俊河,宫帅帅,寇俊萍. 大黄素的药理作用机制研究进展. 中国药科大学学报. 2023(05): 634-643 .
![]() | |
11. |
丁子文,汪璐,任燕,郑岩,李渊,张婧妍,倪娜. 白介素15在肿瘤免疫治疗中的临床研究进展. 世界临床药物. 2022(01): 87-90+104 .
![]() | |
12. |
陈勇,彭思意,刘小保,李坤艳,魏涛,李旭英. 肿瘤专科医院Ⅰ期临床研究病房的建设与实践. 护理学报. 2022(05): 32-36 .
![]() | |
13. |
赖桂花,王菲,周芳,聂多锐,曹建雄. 差异视角下中西医治疗肿瘤的协同优势. 中医药临床杂志. 2022(04): 599-603 .
![]() | |
14. |
毛露珈,史恩宇,王瀚平,单天贺,王银松,王悦. 细菌外膜囊泡在抗肿瘤治疗方面的研究进展. 中国生物工程杂志. 2022(05): 100-105 .
![]() | |
15. |
张永健,李红专,史恒蔚,许伟,李彦强. 从虚痰瘀毒论治恶性骨肿瘤. 中医研究. 2022(07): 5-8 .
![]() | |
16. |
阮勤钊,李向敏,王涓,谢意珍,吴清平. 基于髓源性抑制细胞的食药用菌多糖抗肿瘤免疫作用机制. 微生物学报. 2022(08): 2969-2980 .
![]() | |
17. |
王昕,付洁,严颐丹,苏颖杰,寇焰宇,管丽,林厚文. 新型抗肿瘤药物研究进展与临床应用. 上海医药. 2022(S2): 9-21 .
![]() | |
18. |
孙偲,武彦昊,郭佳亿,白杨,郝慧芳. 外膜囊泡在肿瘤疫苗中的应用研究进展. 生命科学. 2022(11): 1431-1441 .
![]() | |
19. |
胡秦,杨怡姝,贾润清,盛望. 生物技术专业免疫学课程思政教学实践与探索. 中国教育技术装备. 2022(04): 78-80 .
![]() |