Citation: | ZHU Hao, LIU Nan. Advances in research progress on acid tolerance mechanism of Gram- negative bacteria mediated by molecular chaperone protein[J]. Journal of China Pharmaceutical University, 2021, 52(2): 164-170. DOI: 10.11665/j.issn.1000-5048.20210204 |
[1] |
. Science, 2014, 346(6205): 35-36.
|
[2] |
Xu Y, Zhao Z, Tong W, et al. An acid-tolerance response system protecting exponentially growing Escherichia coli [J]. Nat Commun, 2020, 11(1): 1496.
|
[3] |
Nguyen TY, Cai CM, Kumar R, et al. Overcoming factors limiting high-solids fermentation of lignocellulosic biomass to ethanol [J]. Proc Natl Acad Sci U S A, 2017, 114(44): 11673-11678.
|
[4] |
Li S, Giardina DM, Siegal ML. Control of nongenetic heterogeneity in growth rate and stress tolerance of Saccharomyces cerevisiae by cyclic AMP-regulated transcription factors [J]. PLoS Genetics, 2018, 14(11):
|
[5] |
Kanjee U, Houry WA. Mechanisms of acid resistance in Escherichia coli [J]. Annu Rev Microbiol, 2013, 67: 65-81.
|
[6] |
Sun Y, Fukamachi T, Saito H, et al. Respiration and the F?Fo-ATPase enhance survival under acidic conditions in Escherichia coli [J]. PLoS One, 2012, 7(12):
|
[7] |
Pennacchietti E, D''alonzo C, Freddi L, et al. The glutaminase-dependent acid resistance system: qualitative and quantitative assays and analysis of its distribution in enteric bacteria [J]. Front Microbiol, 2018, 9: 2869.
|
[8] |
Wollmann P, Zeth K. The structure of RseB: a sensor in periplasmic stress response of E. coli [J]. J Molecul Biol, 2007, 372(4): 927-941.
|
[9] |
Merdanovic M, Clausen T, Kaiser M, et al. Protein quality control in the bacterial periplasm [J]. Annu Rev Microbiol, 2011, 65: 149-168.
|
[10] |
Sklar JG, Wu T, Kahne D, et al. Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli [J]. Genes Dev, 2007, 21(19): 2473-2484.
|
[11] |
Hartl FU, Bracher A, HayerHartl M. Molecular chaperones in protein folding and proteostasis [J]. Nature, 2011, 475(7356): 324-332.
|
[12] |
Willmund F, Del Alamo M, Pechmann S, et al. The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis [J]. Cell, 2013, 152(1/2): 196-209.
|
[13] |
B?ttinger L, Oeljeklaus S, Guiard B, et al. Mitochondrial heat shock protein (Hsp) 70 and Hsp10 cooperate in the formation of Hsp60 complexes [J]. J Biol Chem, 2015, 290(18): 11611-11622.
|
[14] |
Rani S, Sharma A, Goel M. Insights into archaeal chaperone machinery: a network-based approach [J]. Cell Stress Chaperones, 2018, 23(6): 1257-1274.
|
[15] |
Li X, Shao H, Taylor IR, et al. Targeting allosteric control mechanisms in heat shock protein 70 (Hsp70) [J]. Curr Top Med Chem, 2016, 16(25): 2729-2740.
|
[16] |
Yang J, Zong Y, Su J, et al. Conformation transitions of the polypeptide-binding pocket support an active substrate release from Hsp70s [J]. Nat Commun, 2017, 8(1): 1201.
|
[17] |
BudinaKolomets A, Webster MR, Leu JJ, et al. HSP70 inhibition limits FAK-dependent invasion and enhances the response to melanoma treatment with BRAF inhibitors [J]. Cancer Res, 2016, 76(9): 2720-2730.
|
[18] |
Ellison MA, Ferrier MD, Carney SL. Salinity stress results in differential Hsp70 expression in the exaiptasia pallida and symbiodinium symbiosis [J]. Mar Environ Res, 2017, 132: 63-67.
|
[19] |
Kumar S, Stokes J, Singh UP, et al. Targeting Hsp70: a possible therapy for cancer [J]. Cancer Lett, 2016, 374(1): 156-166.
|
[20] |
Reeg S, Jung T, Castro JP, et al. The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome [J]. Free Radic Biol Med, 2016, 99: 153-166.
|
[21] |
Meng Q, Li BX, Xiao X. Toward developing chemical modulators of Hsp60 as potential therapeutics [J]. Front Mol Biosci, 2018, 20: 5-35.
|
[22] |
Marino Gammazza A, Macaluso F, Di FeliceV, et al. Hsp60 in skeletal muscle fiber biogenesis and homeostasis: from physical exercise to skeletal muscle pathology [J]. Cells, 2018, 7(12): 224.
|
[23] |
Gajiwala KS, Burley SK. HDEA, a periplasmic protein that supports acid resistance in pathogenic enteric bacteria [J]. J Biol Chem, 2000, 295(3): 605-612.
|
[24] |
Wang W, Rasmussen T, Harding AJ, et al. Salt bridges regulate both dimer formation and monomeric flexibility in HdeB and may have a role in periplasmic chaperone function [J]. J Biol Chem, 2012, 415(3): 538-546.
|
[25] |
Tapley TL, K?rner JL, Barge MT, et al. Structural plasticity of an acid-activated chaperone allows promiscuous substrate binding [J]. Proc Natl Acad Sci U S A, 2009, 106(14): 5557-5562.
|
[26] |
Guan N, Liu L. Microbial response to acid stress: mechanisms and applications [J]. Appl Microbiol Biotechnol, 2020, 104(1): 51-65.
|
[27] |
Yu XC, Hu Y, Ding J, et al. Structural basis and mechanism of the unfolding-induced activation of HdeA, a bacterial acid response chaperone [J]. J Biol Chem, 2019, 294(9): 3192-3206.
|
[28] |
Zhang M, Lin S, Song X, et al. A genetically incorporated crosslinker reveals chaperone cooperation in acid resistance [J]. Nat Chem Biol, 2011, 7(10): 671-677.
|
[29] |
Kern R, Malki A, Abdallah J, et al. Escherichia coli HdeB is an acid stress chaperone [J]. J Bacteriol, 2007, 189(2): 603-610.
|
[30] |
Zhang S, He D, Yang Y, et al. Comparative proteomics reveal distinct chaperone-client interactions in supporting bacterial acid resistance [J]. Proc Natl Acad Sci U S A, 2016, 113(39): 10872-10877.
|
[31] |
Libich DS, Tugarinov V, Clore GM. Intrinsic unfoldase/foldase activity of the chaperonin GroEL directly demonstrated using multinuclear relaxation-based NMR [J]. Proc Natl Acad Sci U S A, 2015, 112(29): 8817-8823.
|
[32] |
W?lti MA, Steiner J, Meng F, et al. Probing the mechanism of inhibition of amyloid-β(1-42)-induced neurotoxicity by the chaperonin GroEL [J]. Proc Natl Acad Sci U S A, 2018, 115(51): E11924-E11932.
|
[33] |
Feng S, Yang H, Wang W. System-level understanding of the potential acid-tolerance components of Acidithiobacillus thiooxidans ZJJN-3 under extreme acid stress [J]. Extremophiles, 2015, 19(5): 1029-1039.
|
[34] |
Kaspar J, Kim JN, Ahn SJ, et al. An essential role for (p)ppGpp in the integration of stress tolerance, peptide signaling, and competence development in Streptococcus mutans [J]. Front Microbiol, 2016, 7: 1162.
|
[35] |
Dahiya V, Chaudhuri TK. Chaperones GroEL/GroES accelerate the refolding of a multidomain protein through modulating on-pathway intermediates [J]. J Biol Chem, 2014, 289(1): 286-298.
|
[36] |
Jewett AI, Shea JE. Reconciling theories of chaperonin accelerated folding with experimental evidence [J]. Cell Mol Life Sci, 2010, 67(2): 255-276.
|
[37] |
Zanotti G, Cendron L. Functional and structural aspects of helicobacter pylori acidic stress response factors [J]. IUBMB Life, 2010, 62(10): 715-723.
|
[38] |
AlM Abdullah, Sugimoto S, Higashi C, et al. Improvement of multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 under conditions of thermal stress by heterologous expression of Escherichia coli DnaK [J]. Appl Environ Microbiol, 2010, 76(13): 4277-4285.
|
[39] |
Vinusha KS, Deepika K, Johnson TS, et al. Proteomic studies on lactic acid bacteria: a review [J]. Biochem Biophys Rep, 2018, 14: 140-148.
|
[40] |
Arunima A, Swain SK, Ray S, et al. RpoS-regulated gene promotes resistance to stress and influences Salmonella enterica serovar enteritidis virulence [J]. Virulence, 2020, 11(1): 295-314.
|
[41] |
Chen C, Choudhury A, Zhang S, et al. Integrating CRISPR-enabled trackable genome engineering and transcriptomic analysis of global regulators for antibiotic resistance selection and identification in Escherichia coli [J]. mSystems, 2020, 5(2):
|
[42] |
Basak S, Geng H, Jiang R. Rewiring global regulator cAMP receptor protein (CRP) to improve E. coli tolerance towards low pH [J]. J Biotechnol, 2014, 173: 68-75.
|
[43] |
Dorman CJ. H-NS-like nucleoid-associated proteins, mobile genetic elements and horizontal gene transfer in bacteria [J]. Plasmid, 2014, 75: 1-11
|
[44] |
Shin M, Song M, Rhee JH, et al. DNA looping-mediated repression by histone-like protein H-NS: specific requirement of esigma70 as a cofactor for looping [J]. Genes Dev, 2005, 19(19): 2388-2398.
|
[45] |
Gao X, Yang X, Li J, et al. Engineered global regulator H-NS improves the acid tolerance of E. coli [J]. Microb Cell Fact, 2018, 17(1): 118.
|
[46] |
Shilling RA, Venter H, Velamakanni S, et al. New light on multidrug binding by an ATP-binding-cassette transporter [J]. Trends Pharmacol Sci, 2006, 27(4): 195-203.
|
[47] |
Ford RC, Beis K. Learning the ABCs one at a time: structure and mechanism of ABC transporters [J]. Biochem Soc Trans, 2019, 47(1): 23-36.
|
[48] |
Zhu Z, Yang J, Yang P, et al. Enhanced acid-stress tolerance in Lactococcus lactis NZ9000 by overexpression of ABC transporters [J]. Microb Cell Fact, 2019, 18(1): 136.
|
[49] |
Robinson T, Smith P, Alberts ER, et al. Cooperation and cheating through a secreted aminopeptidase in the pseudomonas aeruginosa RpoS response [J]. mBio, 2020, 11(2): e03090-e03119.
|
[50] |
Seo SW, Kim D, O''brien E J, et al. Decoding genome-wide GadEWX-transcriptional regulatory networks reveals multifaceted cellular responses to acid stress in Escherichia coli [J]. Nat Commun, 2015, 6: 7970.
|
[51] |
Liu CJ, Lin CT, Chiang JD, et al. RcsB regulation of the YfdX-mediated acid stress response in Klebsiella pneumoniae CG43S3 [J]. PLoS One, 2019, 14(2):
|
[52] |
Sen H, Aggarwal N, Ishionwu C, et al. Structural and functional analysis of the Escherichia coli acid-sensing histidine kinase EvgS [J]. J Bacteriol, 2017, 199(18):e00310-e00317.
|
[53] |
Oglesby AG, Murphy ER, Iyer VR, et al. Fur regulates acid resistance in Shigella flexneri via RyhB and ydeP [J]. Mol Microbiol, 2005, 58(5): 1354-1367.
|
[54] |
Xu N, Lv H, Wei L, et al. Impaired oxidative stress and sulfur assimilation contribute to acid tolerance of Corynebacterium glutamicum [J]. Appl Microbiol Biotechnol, 2019, 103(4): 1877-1891.
|