Citation: | WEI Dasha, GUAN Xin, ZHANG Shengbin, YU Fang, WANG Cunfang, ZHOU Yu, PANG Tao. Effects of cerebroprotein hydrolysate for injection (II) on neuritogenesis and its underlying mechanisms[J]. Journal of China Pharmaceutical University, 2021, 52(2): 219-226. DOI: 10.11665/j.issn.1000-5048.20210211 |
[1] |
. Philos Trans R Soc Lond B Biol Sci, 1999, 354(1390):1641-1647.
|
[2] |
Hinman JD. The back and forth of axonal injury and repair after stroke[J]. Curr Opin Neurol, 2014, 27(6):615-623.
|
[3] |
Deng BB, Lv WJ, Duan WS, et al. Progressive degeneration and inhibition of peripheral nerve regeneration in the SOD1-G93A mouse model of amyotrophic lateral sclerosis[J]. Cell Physiol Biochem, 2018, 46(6):2358-2372.
|
[4] |
Kordower JH, Burke RE. Disease modification for Parkinson''s disease: axonal regeneration and trophic factors[J]. Mov Disord, 2018, 33(5):678-683.
|
[5] |
Wang L, Yang HY, Zang CX, et al. CXCR2 antagonism promotes oligodendrocyte precursor cell differentiation and enhances remyelination in a mouse model of multiple sclerosis[J]. Neurobiol Dis, 2020, 134:104630.
|
[6] |
O''Donovan KJ. Intrinsic axonal growth and the drive for regeneration[J]. Front Neurosci, 2016, 10:486.
|
[7] |
Lao RJ, Feng FF, Li WE, et al. Analysis on the rationality of the application of brain protein hydrolysates for injection in 520 inpatients[J]. Eval Anal Drug Use Hosp China(中国医院用药评价与分析), 2018, 18(5): 684-686.
|
[8] |
Plosker GL, Gauthier S. Cerebrolysin: a review of its use in dementia[J]. Drugs Aging, 2009, 26(11): 893-915.
|
[9] |
Zhao LR. Effects of brain protein hydrolysate for injection on neurological function and cerebral hemodynamics in patients with acute cerebral infarction[J]. Mod Diagn Treatment(现代诊断与治疗), 2019, 30(18):3199-3200.
|
[10] |
Wei J, Ma YL, Shao XT, et al. Effect of brain protein hydrolysate on memory consolidation in mice and its mechanism[J]. Chin J Gerontol (中国老年学杂志), 2015, 35(9):2362-2365.
|
[11] |
Guan X, Wang YJ, Kai G, et al. Cerebrolysin ameliorates focal cerebral ischemia injury through neuroinflammatory inhibition via CREB/PGC-1α pathway[J]. Front Pharmacol, 2019, 10:1245.
|
[12] |
Liu ZH, Wang WY, Huang TY, et al. CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on alzheimer''s disease[J]. PLoS One, 2019, 14(9):
|
[13] |
Liu R, Tang JC, Pan MX, et al. ERK 1/2 activation mediates the neuroprotective effect of BpV(pic) in focal cerebral ischemia-reperfusion injury[J]. Neurochem Res, 2018, 43(7):1424-1438.
|
[14] |
Tremblay RG, Sikorska M, Sandhu JK, et al. Differentiation of mouse neuro-2a cells into dopamine neurons[J]. J Neurosci Methods, 2010, 186(1):60-67.
|
[15] |
Rockenstein E, Adame A, Mante M, et al. The neuroprotective effects of cerebrolysin in a transgenic model of Alzheimer''s disease are associated with improved behavioral performance[J]. J Neural Transm (Vienna), 2003, 110(11):1313-1327.
|
[16] |
Tajbakhsh A, Mokhtari-Zaer A, Rezaee M, et al. Therapeutic potentials of BDNF/TrkB in breast cancer; current status and perspectives[J]. J Cell Biochem, 2017, 118(9):2502-2515.
|
[17] |
Wang Y, Teng HL, Gao Y, et al. Brain-derived neurotrophic factor promotes the migration of olfactory ensheathing cells through TRPC channels[J]. Glia, 2016, 64(12):2154-2165.
|
[18] |
Zhu WJ, Frost EE, Begum F, et al. The role of dorsal root ganglia activation and brain-derived neurotrophic factor in multiple sclerosis[J]. J Cell Mol Med, 2012, 16(8):1856-1865.
|
[19] |
Dai C, Ciccotosto GD, Cappai R, et al. Rapamycin confers neuroprotection against colistin-induced oxidative stress, mitochondria dysfunction, and apoptosis through the activation of autophagy and mTOR/Akt/CREB signaling pathways[J]. ACS Chem Neurosci, 2018, 9(4):824-837.
|
[20] |
Wang JH, Wan D, Wan GR, et al. Catalpol induces cell activity to promote axonal regeneration via the PI3K/AKT/mTOR pathway in vivo and in vitro stroke model[J]. Ann Transl Med, 2019, 7(23):756.
|
[21] |
Hausott B, Klimaschewski L. Promotion of peripheral nerve regeneration by stimulation of the extracellular signal-regulated kinase (ERK) pathway[J]. Anat Rec (Hoboken),2019, 302(8):1261-1267.
|
[22] |
Segal RA, Greenberg ME. Intracellular signaling pathways activated by neurotrophic factors[J]. Annu Rev Neurosci, 1996, 19:463-489.
|
[23] |
Zheng Q, Liu L, Liu HL, et al. The Bu Shen Yi Sui formula promotes axonal regeneration via regulating the neurotrophic factor BDNF/TrkB and the downstream PI3K/Akt signaling pathway[J]. Front Pharmacol, 2019, 10:796.
|
[24] |
English AW, Liu K, Nicolini JM, et al. Small-molecule trkB agonists promote axon regeneration in cut peripheral nerves[J]. Proc Natl Acad Sci U S A, 2013, 110(40):16217-16222.
|
[25] |
Fletcher JL, Wood RJ, Nguyen J, et al. Targeting trkB with a brain-derived neurotrophic factor mimetic promotes myelin repair in the brain[J]. J Neurosci, 2018, 38(32):7088-7099.
|
[26] |
Guo W, Pang KL, Chen YB, et al. TrkB agonistic antibodies superior to BDNF: utility in treating motoneuron degeneration[J]. Neurobiol Dis, 2019, 132:104590.
|
[27] |
Fan CH, Lin CW, Huang HJ, et al. LMDS-1, a potential trkB receptor agonist provides a safe and neurotrophic effect for early-phase Alzheimer''s disease[J]. Psychopharmacology (Berl), 2020, 237(10):3173-3190.
|
[28] |
Cheah M, Andrews MR. Targeting cell surface receptors for axon regeneration in the central nervous system[J]. Neural Regen Res, 2016, 11(12):1884-1887.
|
[29] |
Hollis ER, Jamshidi P, L?w K, et al. Induction of corticospinal regeneration by lentiviral TrkB-induced Erk activation[J]. Proc Natl Acad Sci U S A, 2009, 106(17):7215-7220.
|
[1] | HOU Yurong, FAN Qingfeng, SHI Sunliang, YUAN Yaozuo, ZHANG Mei. Determination of the content of sisomicin sulfate and sodium chloride injection by RP-HPLC[J]. Journal of China Pharmaceutical University, 2018, 49(6): 695-698. DOI: 10.11665/j.issn.1000-5048.20180609 |
[2] | YAN Zhengyu, SHU Juan, YU Yan, ZHANG Zhengwei, TANG Lu, CHEN Jianqiu. Preparation and application of carbon dots in chloramphenicol determination[J]. Journal of China Pharmaceutical University, 2015, 46(3): 322-327. DOI: 10.11665/j.issn.1000-5048.20150310 |
[3] | ZHONG Wen-ying, HUANG Bin, CHEN Lin, SHU Chang. Fluorescence resonance energy transfer quenching for determination of vitamin B2[J]. Journal of China Pharmaceutical University, 2011, 42(6): 527-533. |
[4] | Determination of Cyclosporin A in Ocular Tissues by HPLC-MS[J]. Journal of China Pharmaceutical University, 2003, (4): 44-47. |
[5] | Content Determination and Stability Research on Diclofenac-Zn[J]. Journal of China Pharmaceutical University, 2002, (3): 92-93. |
[6] | Determination of Contents of Dextromethorphan Hydrobromide and Guaifenesine in Capsules by HPLC[J]. Journal of China Pharmaceutical University, 1999, (5): 367-369. |
[7] | Determination of Norgestrel in Compound Preparation by First Derivative Spectrography[J]. Journal of China Pharmaceutical University, 1995, (4): 246-247. |
[8] | HPLC Determination of Diclofenac in Transdermal Receiver Solution[J]. Journal of China Pharmaceutical University, 1994, (6): 342-344. |
[9] | A Reversed-Phase HPLC Method for the Determination of Paeoniflorin Content[J]. Journal of China Pharmaceutical University, 1994, (4): 46-48. |
[10] | Study on the Content of Tetrahydropalmatine in Corydalis Yanhusuo by SLS-micellar Enhanced Fluorometry[J]. Journal of China Pharmaceutical University, 1993, (6): 345-347. |