Citation: | LI Xiaofang, REN Longfei, WANG Dandan, LI Yuyan. Research progress of anti-Alzheimer′s disease drugs targeting Aβ oligomers[J]. Journal of China Pharmaceutical University, 2021, 52(4): 398-409. DOI: 10.11665/j.issn.1000-5048.20210402 |
[1] |
. J China Pharm Univ (中国药科大学学报),2018,49(1):10-19.
|
[2] |
Jia LF,Quan M,Fu Y,et al. Dementia in China: epidemiology,clinical management,and research advances[J]. Lancet Neurol,2020,19(1):81-92.
|
[3] |
Tolar M,Abushakra S,Sabbagh M. The path forward in Alzheimer′s disease therapeutics: reevaluating the amyloid cascade hypothesis[J]. Alzheimers Dement,2020,16(11):1553-1560.
|
[4] |
Chen GF,Xu TH,Yan Y,et al. Amyloid beta: structure,biology and structure-based therapeutic development[J]. Acta Pharmacol Sin,2017,38(9):1205-1235.
|
[5] |
Liu Y,Nguyen M,Robert A,et al. Metal ions in Alzheimer′s disease: a key role or not[J] ? Acc Chem Res,2019,52(7):2026-2035.
|
[6] |
Bateman RJ,Aisen PS,De Strooper B,et al. Autosomal-dominant Alzheimer′s disease: a review and proposal for the prevention of Alzheimer′s disease[J]. Alzheimers Res Ther,2011,3(1):1.
|
[7] |
Saddiki H,Fayosse A,Cognat E,et al. Age and the association between apolipoprotein E genotype and Alzheimer disease: a cerebrospinal fluid biomarker-based case-control study[J/OL]. PLoS Med,2020,17(8):
|
[8] |
Tolar M,Abushakra S,Hey JA,et al. Aducanumab,gantenerumab,BAN2401,and ALZ-801-the first wave of amyloid-targeting drugs for Alzheimer′s disease with potential for near term approval[J]. Alzheimers Res Ther,2020,12(1):183-206.
|
[9] |
Sengupta U,Nilson AN,Kayed R. The role of amyloid-beta oligomers in toxicity,popagation,and immunotherapy[J]. EBioMed,2016,6:42-49.
|
[10] |
Lee SJC,Nam E,Lee HJ,et al. Towards an understanding of amyloid-beta oligomers: characterization,toxicity mechanisms,and inhibitors[J]. Chem Soc Rev,2017,46(2):310-323.
|
[11] |
Hoshi M. Multi-angle development of therapeutic methods for Alzheimer′s disease[J]. Br J Pharmacol,2021,178(4):770-783.
|
[12] |
Tomiyama T,Nagata T,Shimada H,et al. A new amyloid beta variant favoring oligomerization in Alzheimer′s-type dementia[J]. Ann Neurol,2008,63(3):377-387.
|
[13] |
Nilsberth C,Westlind-Danielsson A,Eckman CB,et al. The ''arctic'' APP mutation (E693G) causes Alzheimer''s disease by enhanced Abeta protofibril formation[J]. Nat Neurosci,2001,4(9):887-893.
|
[14] |
Sch?ll M,Wall A,Thordardottir S,et al. Low PiB PET retention in presence of pathologic CSF biomarkers in arctic APP mutation carriers[J]. Neurology,2012,79(3):229-236.
|
[15] |
Ahmed M,Davis J,Aucoin D,et al. Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fibrils[J]. Nat Struct Mol Biol,2010,17(5):561-567.
|
[16] |
Yang J,Zhu BY,Yin W,et al. Differentiating Aβ40 and Aβ42 in amyloid plaques with a small molecule fluorescence probe[J]. Chem Sci,2020,11(20):5238-5245.
|
[17] |
Kocis P,Tolar M,Yu J,et al. Elucidating the Aβ42 anti-aggregation mechanism of action of tramiprosate in Alzheimer′s disease: integrating molecular analytical methods,pharmacokinetic and clinical data[J]. CNS Drugs,2017,31(6):495-509.
|
[18] |
Abushakra S,Porsteinsson A,Scheltens P,et al. Clinical effects of tramiprosate in APOE4/4 homozygous patients with mild Alzheimer′s disease suggest disease modification potential[J]. J Prev Alzheimers Dis,2017,4(3):149-156.
|
[19] |
Hey JA,Kocis P,Hort J,et al. Discovery and identification of an endogenous metabolite of tramiprosate and its prodrug ALZ-801 that inhibits Abeta amyloid oligomer formation in the human brain[J]. CNS Drugs,2018,32(9):849-861.
|
[20] |
Hey JA,Yu JY,Versavel M,et al. Clinical pharmacokinetics and safety of ALZ-801,a novel prodrug of tramiprosate in development for the treatment of Alzheimer′s disease[J].Clin Pharmacokinet,2018,57(3):315-333.
|
[21] |
Wen G,Chen D,Qin W,et al. Stabilizing amyloid-β peptide by the N-terminus capture is capable of preventing and eliminating amyloid-β oligomers[J]. Chem Commun (Camb),2017,53(54):7673-7676.
|
[22] |
Miller Y,Ma B,Nussinov R. Polymorphism in Alzheimer Abeta amyloid organization reflects conformational selection in a rugged energy landscape[J]. Chem Rev,2010,110(8):4820-4838.
|
[23] |
Lee DL,Hodges RS. Structure-activity relationships of de novo designed cyclic antimicrobial peptides based on gramicidin S[J]. Biopolymers,2003,71(1):28-48.
|
[24] |
Andreetto E,Yan LM,Tatarek-Nossol M,et al. Identification of hot regions of the Abeta-IAPP interaction interface as high-affinity binding sites in both cross- and self-association[J]. Angew Chem Int Ed Engl,2010,49(17):3081-3085.
|
[25] |
Kumar S,Birol M,Miranker AD. Foldamer scaffolds suggest distinct structures are associated with alternative gains-of-function in a preamyloid toxin[J]. Chem Commun (Camb),2016,52(38):6391-6394.
|
[26] |
Kumar S,Henning-Knechtel A,Chehade I,et al. Foldamer-mediated structural rearrangement attenuates Aβ oligomerization and cytotoxicity[J]. J Am Chem Soc,2017,139(47):17098-17108.
|
[27] |
Jiang YX,Jiang XH,Shi XD,et al. α-Helical motif as inhibitors of toxic amyloid-β oligomer generation via highly specific recognition of amyloid surface[J]. iScience,2019,17:87-100.
|
[28] |
T?rnquist M,Michaels TCT,Sanagavarapu K,et al. Secondary nucleation in amyloid formation[J]. Chem Commun (Camb),2018,54(63):8667-8684.
|
[29] |
Jiang XH,Cao Y,Han W. In silico study of recognition between Aβ(40) and Aβ(40) fibril surfaces: an N-terminal helical recognition motif and its implications for inhibitor design[J]. ACS Chem Neurosci,2018,9(5):935-944.
|
[30] |
Jiang YH,Deng QW,Zhao H,et al. Development of stabilized peptide-based PROTACs against estrogen receptor α[J]. ACS Chem Biol,2018,13(3):628-635.
|
[31] |
Civitelli L,Sandin L,Nelson E,et al. The luminescent oligothiophene p-FTAA converts toxic Aβ1-42 species into nontoxic amyloid fibers with altered properties[J]. J Biol Chem,2016,291(17):9233-9243.
|
[32] |
Yang SG,Liu W,Lu S,et al. A novel multifunctional compound camellikaempferoside B decreases Aβ production,interferes with Aβ aggregation,and prohibits Aβ-mediated neurotoxicity and neuroinflammation[J]. ACS Chem Neurosci,2016,7(4):505-518.
|
[33] |
Wang XP,Zhang JH,Wang YJ,et al. Conformation-dependent single-chain variable fragment antibodies specifically recognize beta-amyloid oligomers[J]. FEBS Lett,2009,583(3):579-584.
|
[34] |
Kayed R,Head E,Sarsoza F,et al. Fibril specific,conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers[J]. Mol Neurodegener,2007,2(9):1-26.
|
[35] |
Zhang JX,Lai YH,Mi PY,et al. Rescue of cognitive deficits in APP/PS1 mice by accelerating the aggregation of β-amyloid peptide[J]. Alzheimers Res Ther,2019,11(1):184-185.
|
[36] |
Klein AN,Ziehm T,Tusche M,et al. Optimization of the all-d peptide D3 for Abeta oligomer elimination[J]. PLoS One,2016,11(4):
|
[37] |
Liu H,Qian CY,Yang T,et al. Small molecule-mediated co-assembly of amyloid-β oligomers reduces neurotoxicity through promoting non-fibrillar aggregation[J]. Chem Sci,2020,11(27):7158-7169.
|
[38] |
Raymond DM,Nilsson BL. Multicomponent peptide assemblies[J]. Chem Soc Rev,2018,47(10):3659-3720.
|
[39] |
Lantz KA,Hart SG,Planey SL,et al. Inhibition of PTP1B by trodusquemine (MSI-1436) causes fat-specific weight loss in diet-induced obese mice[J]. Obesity (Silver Spring),2010,18(8):1516-1523.
|
[40] |
Zasloff M,Adams AP,Beckerman B,et al. Squalamine as a broad-spectrum systemic antiviral agent with therapeutic potential[J]. Proc Natl Acad Sci U S A,2011,108(38):15978-15983.
|
[41] |
Limbocker R,Chia S,Ruggeri FS,et al. Trodusquemine enhances Aβ(42) aggregation but suppresses its toxicity by displacing oligomers from cell membranes[J]. Nat Commun,2019,10(1):225.
|
[42] |
Liu FF,Zhao WP,Zhao F,et al. Dual effect of the acidic polysaccharose ulvan on the inhibition of amyloid-beta protein fibrillation and disintegration of mature fibrils[J]. ACS Appl Mater Interfaces,2020,12(37):41167-41176.
|
[43] |
Uddin MS,Kabir MT,Rahman MS,et al. Revisiting the amyloid cascade hypothesis: from anti-Aβ therapeutics to auspicious new ways for Alzheimer′s disease[J]. Int J Mol Sci,2020,21(16):5858.
|
[44] |
Logovinsky V,Satlin A,Lai R,et al. Safety and tolerability of BAN2401 — a clinical study in Alzheimer′s disease with a protofibril selective Aβ antibody[J]. Alzheimers Res Ther,2016,8(1):14.
|
[45] |
Englund H,Sehlin D,Johansson AS,et al. Sensitive ELISA detection of amyloid-beta protofibrils in biological samples[J]. J Neurochem,2007,103(1):334-345.
|
[46] |
S?llvander S,Nikitidou E,Gallasch L,et al. The Aβ protofibril selective antibody mAb158 prevents accumulation of Aβ in astrocytes and rescues neurons from Aβ-induced cell death[J]. J Neuroinflammation,2018,15(1):98.
|
[47] |
Lord A,Gumucio A,Englund H,et al. An amyloid-beta protofibril-selective antibody prevents amyloid formation in a mouse model of Alzheimer′s disease[J]. Neurobiol Dis,2009,36(3):425-434.
|
[48] |
Abbasi J. Promising results in 18-month analysis of Alzheimer drug candidate[J]. JAMA,2018,320(10):965-965.
|
[49] |
Meilandt WJ,Maloney JA,Imperio J,et al. Characterization of the selective in vitro and in vivo binding properties of crenezumab to oligomeric Aβ[J]. Alzheimers Res Ther,2019,11(1):97.
|
[50] |
Ultsch M,Li B,Maurer T,et al. Structure of crenezumab complex with Aβ shows loss of β-hairpin[J]. Sci Rep,2016,6(1):39374.
|
[51] |
Adolfsson O,Pihlgren M,Toni N,et al. An effector-reduced anti-β-amyloid (Aβ) antibody with unique Aβ binding properties promotes neuroprotection and glial engulfment of Aβ[J]. J Neurosci,2012,32(28):9677-9689.
|
[52] |
Cummings JL,Cohen S,Van Dyck CH,et al. ABBY: A phase 2 randomized trial of crenezumab in mild to moderate Alzheimer disease[J/OL]. Neurology,2018,90(21):
|
[53] |
Salloway S,Honigberg LA,Cho W,et al. Amyloid positron emission tomography and cerebrospinal fluid results from a crenezumab anti-amyloid-beta antibody double-blind,placebo-controlled,randomized phase II study in mild-to-moderate Alzheimer′s disease (BLAZE)[J]. Alzheimers Res Ther,2018,10(1):96.
|
[54] |
Rios-Romenets S,Lopera F,Sink KM,et al. Baseline demographic,clinical,and cognitive characteristics of the Alzheimer′s prevention initiative (API) autosomal-dominant Alzheimer′s disease colombia trial[J]. Alzheimers Dement,2020,16(7):1023-1030.
|
[55] |
Wiesehan K,Buder K,Linke RP,et al. Selection of d-amino-acid peptides that bind to Alzheimer′s disease amyloid peptide abeta1-42 by mirror image phage display[J]. ChemBioChem,2003,4(8):748-753.
|
[56] |
Van Groen T,Schemmert S,Brener O,et al. The Aβ oligomer eliminating d-enantiomeric peptide RD2 improves cognition without changing plaque pathology[J]. Sci Rep,2017,7(1):16275.
|
[57] |
Leithold LH,Jiang N,Post J,et al. Pharmacokinetic properties of a novel d-peptide developed to be therapeutically active against toxic β-amyloid oligomers[J]. Pharm Res,2016,33(2):328-336.
|
[58] |
Elfgen A,Hupert M,Bochinsky K,et al. Metabolic resistance of the d-peptide RD2 developed for direct elimination of amyloid-β oligomers[J]. Sci Rep,2019,9(1):1-13.
|
[59] |
Zhang T,Gering I,Kutzsche J,et al. Toward the mode of action of the clinical stage all-d-enantiomeric peptide RD2 on Aβ42 aggregation[J]. ACS Chem Neurosci,2019,10(12):4800-4809.
|
[60] |
Olubiyi OO,Frenzel D,Bartnik D,et al. Amyloid aggregation inhibitory mechanism of arginine-rich d-peptides[J]. Curr Med Chem,2014,21(12):1448-1457.
|
[61] |
Umeda T,Ono K,Sakai A,et al. Rifampicin is a candidate preventive medicine against amyloid-β and tau oligomers[J]. Brain,2016,139(5):1568-1586.
|
[62] |
Cho YS,Mcquade T,Zhang HB,et al. RIP1-dependent and independent effects of necrostatin-1 in necrosis and T cell activation[J]. PLoS One,2011,6(8):
|
[63] |
Li JX,Mcquade T,Siemer AB,et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis[J] . Cell,2012,150(2):339-350.
|
[64] |
Yang SH,Lee DK,Shin J,et al. Nec-1 alleviates cognitive impairment with reduction of Aβ and tau abnormalities in APP/PS1 mice[J]. EMBO Mol Med,2017,9(1):61-77.
|
[1] | ZHU Song, JIANG Jing, LIU Yang, ZOU Wenyu, HU Pengwei, LU Yuting, SONG Min, HANG Taijun. Structural identification of the related substances of lorazepam tablets by LC-MS[J]. Journal of China Pharmaceutical University, 2021, 52(5): 555-565. DOI: 10.11665/j.issn.1000-5048.20210507 |
[2] | LIANG Fangmei, NI Yueling, WANG Lu, HANG Taijun, SONG Min. Structural identification of the related substances of fusidic acid by LC-MS[J]. Journal of China Pharmaceutical University, 2018, 49(3): 322-332. DOI: 10.11665/j.issn.1000-5048.20180311 |
[3] | YIN Xiaoya, WANG Cheng, MING Guojun, HANG Taijun. Identification of the related substances in pioglitazone hydrochloride by hyphenated LC-MS techniques[J]. Journal of China Pharmaceutical University, 2017, 48(6): 701-710. DOI: 10.11665/j.issn.1000-5048.20170611 |
[4] | FANG Daqing, LIU Fang, ZHANG Sijia, CAI Chaoqun, LIU Minzhuo, LIU Jinghan, YANG Chunhua, WANG Hao. One new diterpenoid alkaloid from Aconitum carmichaeli[J]. Journal of China Pharmaceutical University, 2017, 48(5): 568-571. DOI: 10.11665/j.issn.1000-5048.20170510 |
[5] | CHEN Wenhua, ZOU Limin, ZHANG Fei, ZHANG Liandi, LIAO Mingyi, DING Li. Identification of the related substances in bendamustine hydrochloride[J]. Journal of China Pharmaceutical University, 2015, 46(3): 333-338. DOI: 10.11665/j.issn.1000-5048.20150312 |
[6] | ZHOU Yongmei, SHI Xianming, MA Lei, ZHANG Sifang. Isolation and identification of Withaphysalins from Physalis minima[J]. Journal of China Pharmaceutical University, 2015, 46(1): 62-65. DOI: 10.11665/j.issn.1000-5048.20150107 |
[7] | RAO Ya-kun, DING Li, YU Yong. Structural identification of two major impurities in sodium levofolinate[J]. Journal of China Pharmaceutical University, 2012, 43(4): 350-354. |
[8] | WANG Ying, YIN Hong-ping, CHEN Tao, WANG Min. Preliminary structural identification and protection on renal cell injury of acidic polysaccharide from Cordyceps sinensis[J]. Journal of China Pharmaceutical University, 2009, 40(6): 559-564. |
[9] | Isolation and Identification of Two Taxane DiterpenoidCompounds[J]. Journal of China Pharmaceutical University, 2001, (3): 32-34. |
[10] | Studies on 1H NMR of Naturally Occurring Taxane Diterpenoids and Revising Suggestions on Some Structures[J]. Journal of China Pharmaceutical University, 1998, (4): 19-22+25. |