Citation: | XU Shuyi, LI Yaxian, HU Hai, ZHANG Li, BIAN Yanlin, ZHU Jianwei, WU Mingyuan. Purification and activity of anti-PD-L1&CXCR4 bispecific nanobody[J]. Journal of China Pharmaceutical University, 2021, 52(5): 622-629. DOI: 10.11665/j.issn.1000-5048.20210516 |
[1] |
. Nanomedicine (Lond),2015,10(1):161-174.
|
[2] |
Revets H,De Baetselier P,Muyldermans S. Nanobodies as novel agents for cancer therapy[J]. Expert Opin Biol Ther,2005,5(1):111-124.
|
[3] |
Fernandes JC. Therapeutic application of antibody fragments in autoimmune diseases:current state and prospects[J]. Drug Discov Today,2018,23(12):1996-2002.
|
[4] |
Roovers RC,Vosjan MJ,Laeremans T,et al. A biparatopic anti-EGFR nanobody efficiently inhibits solid tumour growth[J]. Int J Cancer,2011,129(8):2013-2024.
|
[5] |
Peyvandi F,Scully M,Kremer Hovinga JA,et al. Caplacizumab for acquired thrombotic thrombocytopenic Purpura[J]. N Engl J Med,2016,374(6):511-522.
|
[6] |
Xing XY,Wang XC,He W. Advances in research on tumor immunotherapy and its drug development[J]. J China Pharm Univ(中国药科大学学报),2021,52(1):10-19.
|
[7] |
Yang J,Hu LQ. Immunomodulators targeting the PD-1/PD-L1 protein-protein interaction:from antibodies to small molecules[J]. Med Res Rev,2019,39(1):265-301.
|
[8] |
Asano T,Meguri Y,Yoshioka T,et al. PD-1 modulates regulatory T-cell homeostasis during low-dose interleukin-2 therapy[J]. Blood,2017,129(15):2186-2197.
|
[9] |
Zou W,Wolchok JD,Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy:mechanisms,response biomarkers,and combinations[J]. Sci Transl Med,2016,8(328):328rv4.
|
[10] |
Nowicki TS,Hu-Lieskovan S,Ribas A. Mechanisms of resistance to PD-1 and PD-L1 blockade[J]. Cancer J,2018,24(1):47-53.
|
[11] |
Anderson KG,Stromnes IM,Greenberg PD. Obstacles posed by the tumor microenvironment to T cell activity:a case for synergistic therapies[J]. Cancer Cell,2017,31(3):311-325.
|
[12] |
Domanska UM,Kruizinga RC,Nagengast WB,et al. A review on CXCR4/CXCL12 axis in oncology:no place to hide[J]. Eur J Cancer,2013,49(1):219-230.
|
[13] |
Scala S. Molecular pathways:targeting the CXCR4-CXCL12 axis:untapped potential in the tumor microenvironment[J]. Clin Cancer Res,2015,21(19):4278-4285.
|
[14] |
Bockorny B,Semenisty V,Macarulla T,et al. BL-8040,a CXCR4 antagonist,in combination with pembrolizumab and chemotherapy for pancreatic cancer:the COMBAT trial[J]. Nat Med,2020,26(6):878-885.
|
[15] |
Abraham M,Mishalian I,Harel Y,et al. Effect of BL-8040,high-affinity CXCR4 antagonist,on T-cell infiltration,tumor growth,and synergy with immunomodulatory agents[J]. J Clin Oncol,2017,35(
|
[16] |
Li ZT,Wang YX,Shen YX,et al. Targeting pulmonary tumor microenvironment with CXCR4-inhibiting nanocomplex to enhance anti-PD-L1 immunotherapy[J]. Sci Adv,2020,6(20):
|
[17] |
Zhang F,Wei HD,Wang XX,et al. Structural basis of a novel PD-L1 nanobody for immune checkpoint blockade[J]. Cell Discov,2017,3:17004.
|
[18] |
J?hnichen S,Blanchetot C,Maussang D,et al. CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells[J]. PNAS,2010,107(47):20565-20570.
|
[19] |
Yang WH,Chen PW,Li HC,et al. PD-L1:PD-1 interaction contributes to the functional suppression of T-cell responses to human uveal melanoma cells in vitro[J]. Invest Ophthalmol Vis Sci,2008,49(6):2518-2525.
|
[20] |
Suurs FV,Lub-de Hooge MN,de Vries EGE,et al. A review of bispecific antibodies and antibody constructs in oncology and clinical challenges[J]. Pharmacol Ther,2019,201:103-119.
|
[21] |
Qin WT,Hu LP,Zhang XL,et al. The diverse function of PD-1/PD-L pathway beyond cancer[J]. Front Immunol,2019,10:2298.
|
[22] |
Seo YD,Jiang XY,Sullivan KM,et al. Mobilization of CD8+ T cells via CXCR4 blockade facilitates PD-1 checkpoint therapy in human pancreatic cancer[J]. Clin Cancer Res,2019,25(13):3934-3945.
|
[23] |
Decrop W,Swart R,Gendeh G. Development of an automated method for monoclonal antibodies purification and analysis[J]. J Biomol Tech,2010,21(3
|
[1] | HOU Yurong, FAN Qingfeng, SHI Sunliang, YUAN Yaozuo, ZHANG Mei. Determination of the content of sisomicin sulfate and sodium chloride injection by RP-HPLC[J]. Journal of China Pharmaceutical University, 2018, 49(6): 695-698. DOI: 10.11665/j.issn.1000-5048.20180609 |
[2] | YAN Zhengyu, SHU Juan, YU Yan, ZHANG Zhengwei, TANG Lu, CHEN Jianqiu. Preparation and application of carbon dots in chloramphenicol determination[J]. Journal of China Pharmaceutical University, 2015, 46(3): 322-327. DOI: 10.11665/j.issn.1000-5048.20150310 |
[3] | ZHONG Wen-ying, HUANG Bin, CHEN Lin, SHU Chang. Fluorescence resonance energy transfer quenching for determination of vitamin B2[J]. Journal of China Pharmaceutical University, 2011, 42(6): 527-533. |
[4] | Determination of Cyclosporin A in Ocular Tissues by HPLC-MS[J]. Journal of China Pharmaceutical University, 2003, (4): 44-47. |
[5] | Content Determination and Stability Research on Diclofenac-Zn[J]. Journal of China Pharmaceutical University, 2002, (3): 92-93. |
[6] | Determination of Contents of Dextromethorphan Hydrobromide and Guaifenesine in Capsules by HPLC[J]. Journal of China Pharmaceutical University, 1999, (5): 367-369. |
[7] | Determination of Norgestrel in Compound Preparation by First Derivative Spectrography[J]. Journal of China Pharmaceutical University, 1995, (4): 246-247. |
[8] | HPLC Determination of Diclofenac in Transdermal Receiver Solution[J]. Journal of China Pharmaceutical University, 1994, (6): 342-344. |
[9] | A Reversed-Phase HPLC Method for the Determination of Paeoniflorin Content[J]. Journal of China Pharmaceutical University, 1994, (4): 46-48. |
[10] | Study on the Content of Tetrahydropalmatine in Corydalis Yanhusuo by SLS-micellar Enhanced Fluorometry[J]. Journal of China Pharmaceutical University, 1993, (6): 345-347. |