Citation: | ZHANG Yuwen, YU Chenlin, DAI Xinchen, XIAO Yibei, LU Meiling. Structural feature of type I CRISPR-Cas system and its application in gene editing[J]. Journal of China Pharmaceutical University, 2021, 52(6): 675-683. DOI: 10.11665/j.issn.1000-5048.20210604 |
[1] |
. J Bacteriol,1987,169(12):5429-5433.
|
[2] |
Jansen R,JDvEmbden,Gaastra W,et al. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Mol Microbiol,2002,43(6):1565-1575.
|
[3] |
Kim S,Loeff L,Colombo S,et al. Selective loading and processing of prespacers for precise CRISPR adaptation[J]. Nature,2020,579(7797):141-145.
|
[4] |
Reimann V,Alkhnbashi OS,Saunders SJ,et al. Structural constraints and enzymatic promiscuity in the Cas6-dependent generation of crRNAs[J]. Nucleic Acids Res,2017,45(2):915-925.
|
[5] |
Musharova O,Sitnik V,Vlot M,et al. Systematic analysis of type I‐E Escherichia coli CRISPR‐Cas PAM sequences ability to promote interference and primed adaptation[J]. Mol Microbiol,2019,111(6):1558-1570.
|
[6] |
Makarova KS,Wolf YI,Iranzo J,et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants[J]. Nat Rev Microbiol,2020,18(2):67-83.
|
[7] |
Nu?ez JK,Kranzusch PJ,Noeske J,et al. Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity[J]. Nat Struct Mol Biol,2014,21(6):528-534.
|
[8] |
Sinkunas T,Gasiunas G,Fremaux C,et al. Cas3 is a single-stranded DNA nuclease and ATP‐dependent helicase in the CRISPR/Cas immune system[J]. EMBO J,2011,30(7):1335-1342.
|
[9] |
Xiao Y,Luo M,Hayes RP,et al. Structure basis for directional R-loop formation and substrate handover mechanisms in type I CRISPR-Cas system[J]. Cell,2017,170(1):48-60.
|
[10] |
Jesser R,Behler J,Benda C,et al. Biochemical analysis of the Cas6-1 RNA endonuclease associated with the subtype I-D CRISPR-Cas system in Synechocystis sp. PCC 6803[J]. RNA Biol,2019,16(4):481-491.
|
[11] |
Makarova KS,Wolf YI,Alkhnbashi OS,et al. An updated evolutionary classification of CRISPR-Cas systems[J]. Nat Rev Microbiol,2015,13(11):722-736.
|
[12] |
Makarova KS,Koonin EV. Annotation and classification of CRISPR-Cas systems[J]. Methods Mol Biol,2015,1311:47-75.
|
[13] |
Nam KH,Haitjema C,Liu X,et al. Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system[J]. Structure,2012,20(9):1574-1584.
|
[14] |
Fagerlund RD,Wilkinson ME,Klykov O,et al. Spacer capture and integration by a type I-F Cas1-Cas2-3 CRISPR adaptation complex[J]. Proc Natl Acad Sci U S A,2017,114(26):E5122-E5128.
|
[15] |
McBride TM,Schwartz EA,Kumar A,et al. Diverse CRISPR-Cas complexes require independent translation of small and large subunits from a single gene[J]. Mol Cell,2020,80(6):971-979.
|
[16] |
Zhao H,Sheng G,Wang J,et al. Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli[J]. Nature,2014,515(7525):147-150.
|
[17] |
Dwarakanath S,Brenzinger S,Gleditzsch D,et al. Interference activity of a minimal type I CRISPR-Cas system from Shewanella putrefaciens[J]. Nucleic Acids Res,2015,43(18):8913-8923.
|
[18] |
Gu DH,Ha SC,Kim JS. A CRISPR RNA is closely related with the size of the Cascade nucleoprotein complex[J]. Front Microbiol,2019,10:2458.
|
[19] |
Songailiene I,Rutkauskas M,Sinkunas T,et al. Decision-making in Cascade complexes harboring crRNAs of altered length[J]. Cell Rep,2019,28(12):3157-3166.
|
[20] |
Gleditzsch D,Müller-Esparza H,Pausch P,et al. Modulating the Cascade architecture of a minimal type I-F CRISPR-Cas system[J]. Nucleic Acids Res,2016,44(12):5872-5882.
|
[21] |
Pausch P,Müller-Esparza H,Gleditzsch D,et al. Structural variation of type I-F CRISPR RNA guided DNA surveillance[J]. Mol Cell,2017,67(4):622-632.
|
[22] |
O′Brien RE,Santos IC,Wrapp D,et al. Structural basis for assembly of non-canonical small subunits into type I-C Cascade[J]. Nat Commun,2020,11(1):5931.
|
[23] |
Lin J,Fuglsang A,Kjeldsen AL,et al. DNA targeting by subtype I-D CRISPR-Cas shows type I and type III features[J]. Nucleic Acids Res,2020,48(18):10470-10478.
|
[24] |
Ding Y,Li H,Chen L-L,et al. Recent advances in genome editing using CRISPR/Cas9[J]. Front Plant Sci,2016,7:
|
[25] |
Jore MM,Lundgren M,van Duijn E,et al. Structural basis for CRISPR RNA-guided DNA recognition by Cascade[J]. Nat Struct Mol Biol,2011,18(5):529-536.
|
[26] |
Cooper LA,Stringer AM,Wade JT. Determining the specificity of cascade binding,interference,and primed adaptation in vivo in the Escherichia coli type I-E CRISPR-Cas system[J]. mBio,2018,9(2):
|
[27] |
Hochstrasser ML,Taylor DW,Kornfeld JE,et al. DNA targeting by a minimal CRISPR RNA-guided cascade[J]. Mol Cell,2016,63(5):840-851.
|
[28] |
Xiao Y,Luo M,Dolan AE,et al. Structure basis for RNA-guided DNA degradation by Cascade and Cas3[J]. Science,2018,361(6397):
|
[29] |
Li Y,Pan S,Zhang Y,et al. Harnessing type I and type III CRISPR-Cas systems for genome editing[J]. Nucleic Acids Res,2016,44(4):
|
[30] |
Cheng F,Gong L,Zhao D,et al. Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon[J]. J Genet Genomics,2017,44(11):541-548.
|
[31] |
Cs?rg? B,León LM,Chau-Ly IJ,et al. A compact Cascade-Cas3 system for targeted genome engineering[J]. Nat Methods,2020,17(12):1183-1190.
|
[32] |
Minkenberg B,Wheatley M,Yang Y. CRISPR/Cas9-enabled multiplex genome editing and its application[J]. Prog Mol Biol Transl Sci,2017,149:111-132.
|
[33] |
Pan X,Wu Z,Qi X. Research status and application progress of CRISPR/Cas9 delivery system[J]. J China Pharm Univ(中国药科大学学报),2020,51(1):10-18.
|
[34] |
Tuladhar R,Yeu Y,Piazza JT,et al. CRISPR-Cas9-based mutagenesis frequently provokes on-target mRNA misregulation[J]. Nat Commun,2019,10(1):4056.
|
[35] |
Smits AH,Ziebell F,Joberty G,et al. Biological plasticity rescues target activity in CRISPR knock outs[J]. Nat Methods,2019,16(11):1087-1093.
|
[36] |
Dolan AE,Hou Z,Xiao Y,et al. Introducing a spectrum of long-range genomic deletions in human embryonic stem cells using type I CRISPR-Cas[J]. Mol Cell,2019,74(5):936-950.
|
[37] |
Cameron P,Coons MM,Klompe SE,et al. Harnessing type I CRISPR-Cas systems for genome engineering in human cells[J]. Nat Biotechnol,2019,37(12):1471-1477.
|
[38] |
Chen Y,Liu J,Zhi S,et al. Repurposing type I-F CRISPR-Cas system as a transcriptional activation tool in human cells[J]. Nat Commun,2020,11(1):3136.
|
[39] |
Pickar-Oliver A,Black JB,Lewis MM,et al. Targeted transcriptional modulation with type I CRISPR-Cas systems in human cells[J]. Nat Biotechnol,2019,37(12):1493-1501.
|
[40] |
Luo ML,Jackson RN,Denny SR,et al. The CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers[J]. Nucleic Acids Res,2016,44(15):7385-7394.
|
[41] |
Künne T,Zhu Y,da Silva F,et al. Role of nucleotide identity in effective CRISPR target escape mutations[J]. Nucleic Acids Res,2018,46(19):10395-10404.
|
[42] |
Fu BXH,Wainberg M,Kundaje A,et al. High-throughput characterization of Cascade type I-E CRISPR guide efficacy reveals unexpected PAM diversity and target sequence preferences[J]. Genetics,2017,206(4):1727-1738.
|
1. |
王丽屏,邓玲聪,王大红,王茂鹏,尹革芬. 唾液乳杆菌CICC23174株全基因组测序及功能分析. 中国兽医学报. 2024(02): 290-297 .
![]() | |
2. |
王丽屏,邓玲聪,王大红,王茂鹏,尹革芬. 唾液乳杆菌CICC23174全基因组测序及功能分析. 中国兽医学报. 2024(08): 1659-1666 .
![]() |