Citation: | TANG Jin, WANG Yu, YANG Sui, SUN Yu. Construction and in vitro evaluation of targeted cisplatin-loaded nanoparticles for chemo-photothermal cancer therapy[J]. Journal of China Pharmaceutical University, 2021, 52(6): 684-691. DOI: 10.11665/j.issn.1000-5048.20210605 |
[1] |
. Prog Mater Sci,2020,107:100599.
|
[2] |
Yoo J,Park C,Yi G,et al. Active targeting strategies using biological ligands for nanoparticle drug delivery systems[J]. Cancers,2019,11(5):640.
|
[3] |
Huang S,Shi M,He Y,et al. Construction an in vitro evaluation of DC-targeted aptamer-modified Pseudomonas aeruginosa DNA vaccine delivery system[J]. J China Pharm Univ (中国药科大学学报),2019,50:743-752.
|
[4] |
Zhao Z,Ukidve A,Kim J,et al. Targeting strategies for tissue-specific drug delivery[J]. Cell,2020,181(1):151-167.
|
[5] |
Marques AC,Costa PJ,Velho S,et al. Functionalizing nanoparticles with cancer-targeting antibodies:a comparison of strategies[J]. J Control Release,2020,320:180-200.
|
[6] |
Wong SF. Cetuximab:an epidermal growth factor receptor monoclonal antibody for the treatment of colorectal cancer[J]. Clinical Therapeutics,2005,27(6):684-694.
|
[7] |
Sabra R,Billa N,Roberts CJ. Cetuximab-conjugated chitosan-pectinate (modified) composite nanoparticles for targeting colon cancer[J]. Int J Pharm,2019,572:118775.
|
[8] |
Santos EDS,Nogueira KAB,Fernandes LCC,et al. EGFR targeting for cancer therapy:pharmacology and immunoconjugates with drugs and nanoparticles[J]. Int J Pharmaceut,2021,592:120082.
|
[9] |
Mirrahimi M,Abed Z,Beik J,et al. A thermo-responsive alginate nanogel platform co-loaded with gold nanoparticles and cisplatin for combined cancer chemo-photothermal therapy[J]. Pharmacol Res,2019,143:178-185.
|
[10] |
Yu L,Dong A,Guo R,et al. DOX/ICG coencapsulated liposome-coated thermosensitive nanogels for NIR-triggered simultaneous drug release and photothermal effect[J]. ACS Biomater Sci Eng,2018,4(7):2424-2434.
|
[11] |
Duan LQ,Liu T,Chen T. Near-infrared laser-triggered drug release in a tellurium nanosystem for simultaneous chemo-photothermal cancer therapy[J]. Biomater Sci,2021,9(5):1767-1778.
|
[12] |
El-sherbiny RH,Hassan MM,El-Hossary WH,et al. Folate-targeted polymeric nanoparticles for efficient dual (chemo-photothermal) therapy of oral squamous carcinoma[J]. Int J Polym Mater Po,2020,70(6):414-424.
|
[13] |
Nam J,Son S,Ochyl LJ,et al. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer[J]. Nat Commun,2018,9(1):1074.
|
[14] |
Egloff-Juras C,Bezdetnaya L,Dolivet G,et al. NIR fluorescence-guided tumor surgery:new strategies for the use of indocyanine green[J]. Int J Nanomedicine,2019,14:7823-7838.
|
[15] |
Sánchez-Ramírez DR,Domínguez-Ríos R,Juárez J,et al. Biodegradable photoresponsive nanoparticles for chemo-,photothermal- and photodynamic therapy of ovarian cancer[J]. Mater Sci Eng C Mater Biol Appl,2020,116:111196.
|
[16] |
Wang HJ,Williams GR,Xie XT,et al. Stealth polydopamine-based nanoparticles with red blood cell membrane for the chemo-photothermal therapy of cancer[J]. ACS Applied Bio Materials,2020,3(4):2350-2359.
|
[17] |
Dai QX,Ren E,Xu DZ,et al. Indocyanine green-based nanodrugs:a portfolio strategy for precision medicine[J]. Prog Nat Sci-Mater,2020,30(5):577-588.
|
[18] |
Wheate NJ,Walker S,Craig GE,et al. The status of platinum anticancer drugs in the clinic and in clinical trials[J]. Dalton Trans,2010,39(35):8113-8127.
|
[19] |
Pinzani V,Bressolle F,Haug I,et al. Cisplatin-induced renal toxicity and toxicity-modulating strategies-a review[J]. Cancer Chemoth Pharm,1994,35(1):1-9.
|
[20] |
Chang MH,Pai CL,Chen YC,et al. Enhanced antitumor effects of epidermal growth factor receptor targetable cetuximab-conjugated polymeric micelles for photodynamic therapy[J]. Nanomaterials,2018,8(2):121.
|
[21] |
Wang Y,Zhang XM,Sun Y,et al. Cetuximab-decorated and NIR-activated nanoparticles based on Platinum(IV)-prodrug:Preparation,characterization and in-vitro anticancer activity in epidermoid carcinoma cells[J]. Iran J Pharm Res,2021,20(1):371-383.
|
[22] |
Liao WS,Ho Y,Lin YW,et al. Targeting EGFR of triple-negative breast cancer enhances the therapeutic efficacy of paclitaxel- and cetuximab-conjugated nanodiamond nanocomposite[J]. Acta Biomater,2019,86:395-405.
|
[23] |
Mato E,Puras G,Bell O,et al. Selective antitumoral effect of sorafenib loaded PLGA nanoparticles conjugated with cetuximab on undifferentiated anaplastic thyroid carcinoma cells[J]. J Nanomed Nanotechnol,2015,6(3):1000281.
|
[24] |
Qian Y,Qiu M,Wu Q,et al. Enhanced cytotoxic activity of cetuximab in EGFR-positive lung cancer by conjugating with gold nanoparticles[J]. Sci Rep,2014,4:7490.
|
[25] |
Chen Y,Liu G,Guo L,et al. Enhancement of tumor uptake and therapeutic efficacy of EGFR-targeted antibody cetuximab and antibody-drug conjugates by cholesterol sequestration[J]. Int J Cancer,2015,136(1):182-194.
|
[26] |
Pasut G,Veronese FM. State of the art in PEGylation:the great versatility achieved after forty years of research[J]. J Control Release,2012,161(2):461-472.
|
[27] |
Zheng M,Yue C,Ma Y,et al. Single-step assembly of DOX/ICG loaded lipidpolymer nanoparticles for highly effective chemo-photothermal combination therapy[J]. ACS Nano,2013,7(3):2056-2067.
|
[28] |
Lim YT,Noh YW,Han JH,et al. Biocompatible polymer-nanoparticle-based bimodal imaging contrast agents for the labeling and tracking of dendritic cells[J]. Small,2008,4(10):1640-1645.
|
[29] |
Li H,Li J,Ke W,et al. A near-infrared photothermal effect-responsive drug delivery system based on indocyanine green and doxorubicin-loaded polymeric micelles mediated by reversible diels-alder reaction[J]. Macromol Rapid Commun,2015,36(20):1841-1849.
|
[30] |
Chen Y,Li H,Deng Y,et al. Near-infrared light triggered drug delivery system for higher efficacy of combined chemo-photothermal treatment[J]. Acta Biomater,2017,51:374-392.
|
[31] |
Dong Z,Gong H,Gao M,et al. Polydopamine nanoparticles as a versatile molecular loading platform to enable imaging-guided cancer combination therapy[J]. Theranostics,2016,6(7):1031-1042.
|
[32] |
Tian B,Wang C,Zhang S,et al. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide[J]. ACS Nano,2011,5(9):7000-7009.
|
[1] | SU Zhe, ZHOU Chaodong, MA Bing, ZHANG Jing, FU Shengqing, WANG Chong, SHUI Fengchun, HUANG Zhesu. Quality evaluation and specification research of Cervus and Cucumis polypeptide injection[J]. Journal of China Pharmaceutical University, 2020, 51(4): 479-487. DOI: 10.11665/j.issn.1000-5048.20200414 |
[2] | YI Chenchen, SHA Ruilin, CHEN Qinying, XIONG Yerong, TU Jiasheng. Quality study of pharmaceutical excipient polysorbate 80[J]. Journal of China Pharmaceutical University, 2020, 51(2): 168-174. DOI: 10.11665/j.issn.1000-5048.20200206 |
[3] | YIN Zhi-qi, ZHANG Rong-fei, ZHANG Jian, KONG Ming, DAI Yue. Quality evaluation of Gleditsiae Fructus Abnormalis[J]. Journal of China Pharmaceutical University, 2011, 42(5): 428-430. |
[4] | WEI Xiao-ying, LI Shu-bin, GAO Na, LIU Dan, WU Wei, BAO Jie. Preparation and quality evaluation of allitride submicron emulsion injection[J]. Journal of China Pharmaceutical University, 2011, 42(3): 233-237. |
[5] | Quality evaluation of Dendrobii Caulis by HPLC[J]. Journal of China Pharmaceutical University, 2010, 41(5): 467-470. |
[6] | Quality Evaluation of Breviscapine Pre-nanoliposome[J]. Journal of China Pharmaceutical University, 2004, (6): 32-35. |
[7] | Standardization on quality evaluation of 16 Chinese medicinal materials[J]. Journal of China Pharmaceutical University, 2002, (4): 3-5. |
[8] | Study on Quality Evaluation of Traditional Chinese Patent Medicine Wuji Wan by Adaptive Resonance Network and Non-Linear Mapping[J]. Journal of China Pharmaceutical University, 1996, (2): 91-94. |
[9] | Studies on Quality Standard for Shuangliao Houfeng Tablets[J]. Journal of China Pharmaceutical University, 1995, (5): 268-272. |
[10] | Study on the Quality Control of Wangshi Baochi Pills[J]. Journal of China Pharmaceutical University, 1995, (2): 68-71. |