• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
ZHANG Yuxin, DING Ming, LIU Jun. Research progress of proximity labeling technology based on biotin ligase in proteomics[J]. Journal of China Pharmaceutical University, 2022, 53(1): 18-24. DOI: 10.11665/j.issn.1000-5048.20220103
Citation: ZHANG Yuxin, DING Ming, LIU Jun. Research progress of proximity labeling technology based on biotin ligase in proteomics[J]. Journal of China Pharmaceutical University, 2022, 53(1): 18-24. DOI: 10.11665/j.issn.1000-5048.20220103

Research progress of proximity labeling technology based on biotin ligase in proteomics

More Information
  • Received Date: June 10, 2021
  • Revised Date: November 06, 2021
  • Proximity-dependent biotinylation (PDB) uses biotin ligase fused to the protein of interest to biotinylate adjacent proteins, purify them with streptavidin beads, and then identify the biotinylated protein by mass spectrometry.This technology can be used to detect transient and/or low affinity interactions, provide a chance to learn more about membrane-less organelles and other subcellular structures that cannot be easily isolated or purified, and fill the gap in traditional methods.This article summarizes the technological development and application of PDB in recent years.
  • [1]
    . Curr Opin Chem Biol,2019,48:44-54.
    [2]
    Liu Q,Zheng J,Sun W,et al. A proximity-tagging system to identify membrane protein-protein interactions[J]. Nat Methods,2018,15(9):715-722.
    [3]
    Kido K,Yamanaka S,Nakano S,et al. AirID,a novel proximity biotinylation enzyme,for analysis of protein-protein interactions[J]. Elife,2020,9: e54983.
    [4]
    Ramanathan M,Majzoub K,Rao DS,et al. RNA-protein interaction detection in living cells[J]. Nat Methods,2018,15(3):207-212.
    [5]
    Zhang Z,Sun W,Shi T,et al. Capturing RNA-protein interaction via CRUIS[J]. Nucleic Acids Res,2020,48(9):e52.
    [6]
    Roux KJ,Kim DI,Burke B,et al. BioID: a screen for protein-protein interactions[J]. Curr Protoc Protein Sci,2018,91:19.23.1-19.23.15.
    [7]
    Roux KJ,Kim DI,Raida M,et al. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells[J]. J Cell Biol,2012,196(6):801-810.
    [8]
    Kim DI,Birendra KC,Zhu W,et al. Probing nuclear pore complex architecture with proximity-dependent biotinylation[J]. Proc Natl Acad Sci U S A,2014,111(24):E2453-2461.
    [9]
    Khan M,Youn JY,Gingras AC,et al. In planta proximity dependent biotin identification (BioID)[J]. Sci Rep,2018,8(1):9212.
    [10]
    Conlan B,Stoll T,Gorman JJ,et al. Development of a rapid in planta BioID system as a probe for plasma membrane-associated immunity proteins[J]. Front Plant Sci,2018,9:1882.
    [11]
    Morriswood B,Havlicek K,Demmel L,et al. Novel bilobe components in Trypanosoma brucei identified using proximity-dependent biotinylation[J]. Eukaryot Cell,2013,12(2):356-367.
    [12]
    Nadipuram SM,Kim EW,Vashisht AA,et al. In vivo biotinylation of the Toxoplasma parasitophorous vacuole reveals novel dense granule proteins important for parasite growth and pathogenesis[J]. mBio,2016,7(4): e00808-16.
    [13]
    Meyer I,Peter T,Batsios P,et al. CP39,CP75 and CP91 are major structural components of the Dictyostelium centrosome''s core structure[J]. Eur J Cell Biol,2017,96(2):119-130.
    [14]
    Feng W,Liu C,Spinozzi S,et al. Identifying the cardiac dyad proteome in vivo by a BioID2 knock-in strategy[J]. Circulation,2020,141(11):940-942.
    [15]
    Opitz N,Schmitt K,Hofer-Pretz V,et al. Capturing the Asc1p/Receptor for activated C kinase 1 (RACK1) microenvironment at the head region of the 40S ribosome with quantitative BioID in yeast[J]. Mol Cell Proteomics,2017,16(12):2199-2218.
    [16]
    Xiong Z,Lo HP,McMahon KA,et al. In vivo proteomic mapping through GFP-directed proximity-dependent biotin labelling in zebrafish[J]. Elife,2021,10:e64631.
    [17]
    Branon TC,Bosch JA,Sanchez AD,et al. Efficient proximity labeling in living cells and organisms with TurboID[J]. Nat Biotechnol,2018,36(9):880-887.
    [18]
    Chojnowski A,Sobota RM,Ong PF,et al. 2C-BioID:an advanced two component BioID system for precision mapping of protein interactomes[J]. iScience,2018,10:40-52.
    [19]
    Schopp IM,Amaya Ramirez CC,Debeljak J,et al. Split-BioID a conditional proteomics approach to monitor the composition of spatiotemporally defined protein complexes[J]. Nat Commun,2017,8:15690.
    [20]
    De Munter S,Gornemann J,Derua R,et al. Split-BioID:a proximity biotinylation assay for dimerization-dependent protein interactions[J]. FEBS Lett,2017,591(2):415-424.
    [21]
    Schopp IM,Bethune J. Split-BioID — proteomic analysis of context-specific protein complexes in their native cellular environment[J]. J Vis Exp,2018(134):57479.
    [22]
    Kwak C,Shin S,Park JS,et al. Contact-ID,a tool for profiling organelle contact sites,reveals regulatory proteins of mitochondrial-associated membrane formation[J]. Proc Natl Acad Sci U S A,2020,117(22):12109-12120.
    [23]
    Kim DI,Jensen SC,Noble KA,et al. An improved smaller biotin ligase for BioID proximity labeling[J]. Mol Biol Cell,2016,27(8):1188-1196.
    [24]
    Soullam B,Worman HJ. Signals and structural features involved in integral membrane protein targeting to the inner nuclear membrane[J]. J Cell Biol,1995,130(1):15-27.
    [25]
    Chojnowski A,Werner H,Cook M,et al. Protein-protein interaction mapping by 2C-BioID[J]. Curr Protoc Cell Biol,2019,84(1):e96.
    [26]
    Cho KF,Branon TC,Rajeev S,et al. Split-TurboID enables contact-dependent proximity labeling in cells[J]. Proc Natl Acad Sci U S A,2020,117(22):12143-12154.
    [27]
    May DG,Scott KL,Campos AR,et al. Comparative application of BioID and TurboID for protein-proximity biotinylation[J]. Cells,2020,9(5):1070.
    [28]
    Zhou Y,Zou P. The evolving capabilities of enzyme-mediated proximity labeling[J]. Curr Opin Chem Biol,2021,60:30-38.
    [29]
    Loh KH,Stawski PS,Draycott AS,et al. Proteomic analysis of unbounded cellular compartments:synaptic clefts[J]. Cell,2016,166(5):1295-1307.
    [30]
    Comartin D,Gupta GD,Fussner E,et al. CEP120 and SPICE1 cooperate with CPAP in centriole elongation[J]. Curr Biol,2013,23(14):1360-1366.
    [31]
    Gupta GD,Coyaud E,Goncalves J,et al. A dynamic protein interaction landscape of the human centrosome-cilium interface[J]. Cell,2015,163(6):1484-1499.
    [32]
    Youn JY,Dunham WH,Hong SJ,et al. High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies[J]. Mol Cell,2018,69(3):517-532.
    [33]
    Parker R,Partridge T,Wormald C,et al. Mapping the SARS-CoV-2 spike glycoprotein-derived peptidome presented by HLA class II on dendritic cells[J]. Cell Rep,2021,35(8):109179.
    [34]
    V''Kovski P,Steiner S,Thiel V. Methods in Molecular Biology [M].2203. New York:Springer,2020:187-204.
    [35]
    Coyaud E,Ranadheera C,Cheng D,et al. Global interactomics uncovers extensive organellar targeting by Zika virus[J]. Mol Cell Proteomics,2018,17(11):2242-2255.
    [36]
    Nkosi D,Sun L,Duke LC,et al. Epstein-Barr virus LMP1 promotes Syntenin-1- and Hrs-induced extracellular vesicle formation for its own secretion to increase cell proliferation and migration[J]. mBio,2020,11(3):e00589-20.
    [37]
    Rudolph F,Fink C,Huttemeister J,et al. Deconstructing sarcomeric structure-function relations in titin-BioID knock-in mice[J]. Nat Commun,2020,11(1):3133.
    [38]
    Uezu A,Kanak DJ,Bradshaw TW,et al. Identification of an elaborate complex mediating postsynaptic inhibition[J]. Science,2016,353(6304):1123-1129.
    [39]
    Kovalski JR,Bhaduri A,Zehnder AM,et al. The functional proximal proteome of oncogenic Ras includes mTORC2[J]. Mol Cell,2019,73(4):830-844.
    [40]
    Le Sage V,Cinti A,Valiente-Echeverría F,et al. Proteomic analysis of HIV-1 Gag interacting partners using proximity-dependent biotinylation[J]. Virol J,2015,12:138.
    [41]
    Yeung B,Khanal P,Mehta V,et al. Identification of Cdk1-LATS-Pin1 as a novel signaling axis in anti-tubulin drug response of cancer cells[J]. Mol Cancer Res,2018,16(6):1035-1045.
    [42]
    Rayner SL,Morsch M,Molloy MP,et al. Using proteomics to identify ubiquitin ligase-substrate pairs:how novel methods may unveil therapeutic targets for neurodegenerative diseases[J]. Cell Mol Life Sci,2019,76(13):2499-2510.
    [43]
    Coyaud E,Mis M,Laurent EM,et al. BioID-based identification of Skp Cullin F-box (SCF)β-TrCP1/2 E3 ligase substrates[J]. Mol Cell Proteomics,2015,14(7):1781-1795.
    [44]
    Wu G,Lin Q,Lim TK,et al. The interactome of Singapore grouper iridovirus protein ICP18 as revealed by proximity-dependent BioID approach[J]. Virus Res,2021,291:198218.
    [45]
    Das PP,Macharia MW,Lin Q,et al. In planta proximity-dependent biotin identification (BioID) identifies a TMV replication co-chaperone NbSGT1 in the vicinity of 126kDa replicase[J]. J Proteomics,2019,204:103402.
    [46]
    Zhang YL,Li YY,Yang XX,et al. TurboID-based proximity labeling for in planta identification of protein-protein interaction networks[J]. J Vis Exp,2020(159):e60728.
    [47]
    Trinkle-Mulcahy L. Recent advances in proximity-based labeling methods for interactome mapping[J]. F1000Res,2019,8:F1000 Faculty Rev-135.
    [48]
    Kim DI,Roux KJ. Filling the void:proximity-based labeling of proteins in living cells[J]. Trends Cell Biol,2016,26(11):804-817.
    [49]
    Liu X,Salokas K,Tamene F,et al. An AP-MS- and BioID-compatible MAC-tag enables comprehensive mapping of protein interactions and subcellular localizations[J]. Nat Commun,2018,9(1):1188.
    [50]
    Motani K,Kosako H. BioID screening of biotinylation sites using the avidin-like protein Tamavidin 2-REV identifies global interactors of stimulator of interferon genes (STING) [J]. J Biol Chem,2020,295(32):11174-11183.
    [51]
    Lee SY,Seo JK,Rhee HW. Methods in Molecular Biology [M].2008. New York:Springer,2019,97-105.
  • Related Articles

    [1]YANG Ruocong, DUAN Feipeng, CHAO Jiahong, TIAN Pengpeng, YAN Zhiyong, LI Shaojing. Advances of microRNA activity in innate immunity[J]. Journal of China Pharmaceutical University, 2017, 48(4): 396-406. DOI: 10.11665/j.issn.1000-5048.20170403
    [2]XIN Minhang, ZHANG Sanqi. Advances in PI3Kδ selective inhibitors[J]. Journal of China Pharmaceutical University, 2016, 47(5): 503-510. DOI: 10.11665/j.issn.1000-5048.20160501
    [3]JIANG Lu, CHEN Dandan, SUN Minjie, PING Qineng, ZHANG Can. Advances of wax matrix tablets[J]. Journal of China Pharmaceutical University, 2016, 47(4): 497-502. DOI: 10.11665/j.issn.1000-5048.20160418
    [4]YAO Guilin, WANG Haiyong, LU Tao. Advances of the uricosuric drugs[J]. Journal of China Pharmaceutical University, 2016, 47(4): 491-496. DOI: 10.11665/j.issn.1000-5048.20160417
    [5]ZHU Kuiniu, WU Zhengfeng, JIANG Cuihua, CAO Lanjie, ZHANG Jian, YIN Zhiqi. Advances on hypoglycemic activity and mechanism of triterpenoids[J]. Journal of China Pharmaceutical University, 2015, 46(6): 764-770. DOI: 10.11665/j.issn.1000-5048.20150622
    [6]CHEN Qingyu, ZHOU Jianping, HUO Meirong. Advances in the nanotechnology-based drug delivery systems of silymarin[J]. Journal of China Pharmaceutical University, 2015, 46(3): 376-384. DOI: 10.11665/j.issn.1000-5048.20150320
    [7]LIU Kejun, ZHANG Zhimin, RAN Ting, CHEN Hongli, LU Tao, CHEN Yadong. Advances in BET bromodomain protein inhibitors[J]. Journal of China Pharmaceutical University, 2015, 46(3): 264-271. DOI: 10.11665/j.issn.1000-5048.20150302
    [8]QI Likai, DI Bin. Advances in research on pharmaceutical impurities[J]. Journal of China Pharmaceutical University, 2015, 46(3): 257-263. DOI: 10.11665/j.issn.1000-5048.20150301
    [9]SUN Zhan-yi, CAI Hui, HUANG Zhi-hua, SHI Lei, CHEN Yong-xiang, LI Yan-mei. Advances of glycopeptide-associated tumor vaccines[J]. Journal of China Pharmaceutical University, 2012, 43(2): 97-106.
    [10]XU Si-sheng, ZHANG Hui-bin, ZHOU Jin-pei, HUANG Jian-jun. Advances of new antidiabetic drugs[J]. Journal of China Pharmaceutical University, 2011, 42(2): 97-106.
  • Cited by

    Periodical cited type(5)

    1. 张璐娜,倪玉芳,鲜茜雯,王洪连,粟宏伟,王丽,李健春. 基于TurboID邻近蛋白标记技术鉴定细胞内Smad3相互作用网络. 西南医科大学学报. 2025(01): 36-40 .
    2. 潘明,李龙娇,葛层层,黄思扬. 邻近标记技术在弓形虫蛋白质组学研究中的应用进展. 中国兽医杂志. 2024(05): 101-106 .
    3. 白建瑞. 基于生物质谱技术的蛋白质组学研究. 现代农业研究. 2023(04): 145-147 .
    4. 李丁山,韩星,林文忠,查晴辰,张文文,杜振国,张洁,吴祖建. NbMVKa与新竹番茄曲叶病毒AV2蛋白互作对病毒致病性的影响. 农业生物技术学报. 2023(09): 1924-1934 .
    5. 宋彦海,苏适,苏广明,王连明. 生物素对免疫检测干扰的分析研究. 国际免疫学杂志. 2023(05): 511-516 .

    Other cited types(4)

Catalog

    Article views (438) PDF downloads (1012) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return