Citation: | ZHANG Yuxin, DING Ming, LIU Jun. Research progress of proximity labeling technology based on biotin ligase in proteomics[J]. Journal of China Pharmaceutical University, 2022, 53(1): 18-24. DOI: 10.11665/j.issn.1000-5048.20220103 |
[1] |
. Curr Opin Chem Biol,2019,48:44-54.
|
[2] |
Liu Q,Zheng J,Sun W,et al. A proximity-tagging system to identify membrane protein-protein interactions[J]. Nat Methods,2018,15(9):715-722.
|
[3] |
Kido K,Yamanaka S,Nakano S,et al. AirID,a novel proximity biotinylation enzyme,for analysis of protein-protein interactions[J]. Elife,2020,9:
|
[4] |
Ramanathan M,Majzoub K,Rao DS,et al. RNA-protein interaction detection in living cells[J]. Nat Methods,2018,15(3):207-212.
|
[5] |
Zhang Z,Sun W,Shi T,et al. Capturing RNA-protein interaction via CRUIS[J]. Nucleic Acids Res,2020,48(9):
|
[6] |
Roux KJ,Kim DI,Burke B,et al. BioID: a screen for protein-protein interactions[J]. Curr Protoc Protein Sci,2018,91:19.23.1-19.23.15.
|
[7] |
Roux KJ,Kim DI,Raida M,et al. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells[J]. J Cell Biol,2012,196(6):801-810.
|
[8] |
Kim DI,Birendra KC,Zhu W,et al. Probing nuclear pore complex architecture with proximity-dependent biotinylation[J]. Proc Natl Acad Sci U S A,2014,111(24):E2453-2461.
|
[9] |
Khan M,Youn JY,Gingras AC,et al. In planta proximity dependent biotin identification (BioID)[J]. Sci Rep,2018,8(1):9212.
|
[10] |
Conlan B,Stoll T,Gorman JJ,et al. Development of a rapid in planta BioID system as a probe for plasma membrane-associated immunity proteins[J]. Front Plant Sci,2018,9:1882.
|
[11] |
Morriswood B,Havlicek K,Demmel L,et al. Novel bilobe components in Trypanosoma brucei identified using proximity-dependent biotinylation[J]. Eukaryot Cell,2013,12(2):356-367.
|
[12] |
Nadipuram SM,Kim EW,Vashisht AA,et al. In vivo biotinylation of the Toxoplasma parasitophorous vacuole reveals novel dense granule proteins important for parasite growth and pathogenesis[J]. mBio,2016,7(4):
|
[13] |
Meyer I,Peter T,Batsios P,et al. CP39,CP75 and CP91 are major structural components of the Dictyostelium centrosome''s core structure[J]. Eur J Cell Biol,2017,96(2):119-130.
|
[14] |
Feng W,Liu C,Spinozzi S,et al. Identifying the cardiac dyad proteome in vivo by a BioID2 knock-in strategy[J]. Circulation,2020,141(11):940-942.
|
[15] |
Opitz N,Schmitt K,Hofer-Pretz V,et al. Capturing the Asc1p/Receptor for activated C kinase 1 (RACK1) microenvironment at the head region of the 40S ribosome with quantitative BioID in yeast[J]. Mol Cell Proteomics,2017,16(12):2199-2218.
|
[16] |
Xiong Z,Lo HP,McMahon KA,et al. In vivo proteomic mapping through GFP-directed proximity-dependent biotin labelling in zebrafish[J]. Elife,2021,10:
|
[17] |
Branon TC,Bosch JA,Sanchez AD,et al. Efficient proximity labeling in living cells and organisms with TurboID[J]. Nat Biotechnol,2018,36(9):880-887.
|
[18] |
Chojnowski A,Sobota RM,Ong PF,et al. 2C-BioID:an advanced two component BioID system for precision mapping of protein interactomes[J]. iScience,2018,10:40-52.
|
[19] |
Schopp IM,Amaya Ramirez CC,Debeljak J,et al. Split-BioID a conditional proteomics approach to monitor the composition of spatiotemporally defined protein complexes[J]. Nat Commun,2017,8:15690.
|
[20] |
De Munter S,Gornemann J,Derua R,et al. Split-BioID:a proximity biotinylation assay for dimerization-dependent protein interactions[J]. FEBS Lett,2017,591(2):415-424.
|
[21] |
Schopp IM,Bethune J. Split-BioID — proteomic analysis of context-specific protein complexes in their native cellular environment[J]. J Vis Exp,2018(134):57479.
|
[22] |
Kwak C,Shin S,Park JS,et al. Contact-ID,a tool for profiling organelle contact sites,reveals regulatory proteins of mitochondrial-associated membrane formation[J]. Proc Natl Acad Sci U S A,2020,117(22):12109-12120.
|
[23] |
Kim DI,Jensen SC,Noble KA,et al. An improved smaller biotin ligase for BioID proximity labeling[J]. Mol Biol Cell,2016,27(8):1188-1196.
|
[24] |
Soullam B,Worman HJ. Signals and structural features involved in integral membrane protein targeting to the inner nuclear membrane[J]. J Cell Biol,1995,130(1):15-27.
|
[25] |
Chojnowski A,Werner H,Cook M,et al. Protein-protein interaction mapping by 2C-BioID[J]. Curr Protoc Cell Biol,2019,84(1):
|
[26] |
Cho KF,Branon TC,Rajeev S,et al. Split-TurboID enables contact-dependent proximity labeling in cells[J]. Proc Natl Acad Sci U S A,2020,117(22):12143-12154.
|
[27] |
May DG,Scott KL,Campos AR,et al. Comparative application of BioID and TurboID for protein-proximity biotinylation[J]. Cells,2020,9(5):1070.
|
[28] |
Zhou Y,Zou P. The evolving capabilities of enzyme-mediated proximity labeling[J]. Curr Opin Chem Biol,2021,60:30-38.
|
[29] |
Loh KH,Stawski PS,Draycott AS,et al. Proteomic analysis of unbounded cellular compartments:synaptic clefts[J]. Cell,2016,166(5):1295-1307.
|
[30] |
Comartin D,Gupta GD,Fussner E,et al. CEP120 and SPICE1 cooperate with CPAP in centriole elongation[J]. Curr Biol,2013,23(14):1360-1366.
|
[31] |
Gupta GD,Coyaud E,Goncalves J,et al. A dynamic protein interaction landscape of the human centrosome-cilium interface[J]. Cell,2015,163(6):1484-1499.
|
[32] |
Youn JY,Dunham WH,Hong SJ,et al. High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies[J]. Mol Cell,2018,69(3):517-532.
|
[33] |
Parker R,Partridge T,Wormald C,et al. Mapping the SARS-CoV-2 spike glycoprotein-derived peptidome presented by HLA class II on dendritic cells[J]. Cell Rep,2021,35(8):109179.
|
[34] |
V''Kovski P,Steiner S,Thiel V. Methods in Molecular Biology [M].2203. New York:Springer,2020:187-204.
|
[35] |
Coyaud E,Ranadheera C,Cheng D,et al. Global interactomics uncovers extensive organellar targeting by Zika virus[J]. Mol Cell Proteomics,2018,17(11):2242-2255.
|
[36] |
Nkosi D,Sun L,Duke LC,et al. Epstein-Barr virus LMP1 promotes Syntenin-1- and Hrs-induced extracellular vesicle formation for its own secretion to increase cell proliferation and migration[J]. mBio,2020,11(3):
|
[37] |
Rudolph F,Fink C,Huttemeister J,et al. Deconstructing sarcomeric structure-function relations in titin-BioID knock-in mice[J]. Nat Commun,2020,11(1):3133.
|
[38] |
Uezu A,Kanak DJ,Bradshaw TW,et al. Identification of an elaborate complex mediating postsynaptic inhibition[J]. Science,2016,353(6304):1123-1129.
|
[39] |
Kovalski JR,Bhaduri A,Zehnder AM,et al. The functional proximal proteome of oncogenic Ras includes mTORC2[J]. Mol Cell,2019,73(4):830-844.
|
[40] |
Le Sage V,Cinti A,Valiente-Echeverría F,et al. Proteomic analysis of HIV-1 Gag interacting partners using proximity-dependent biotinylation[J]. Virol J,2015,12:138.
|
[41] |
Yeung B,Khanal P,Mehta V,et al. Identification of Cdk1-LATS-Pin1 as a novel signaling axis in anti-tubulin drug response of cancer cells[J]. Mol Cancer Res,2018,16(6):1035-1045.
|
[42] |
Rayner SL,Morsch M,Molloy MP,et al. Using proteomics to identify ubiquitin ligase-substrate pairs:how novel methods may unveil therapeutic targets for neurodegenerative diseases[J]. Cell Mol Life Sci,2019,76(13):2499-2510.
|
[43] |
Coyaud E,Mis M,Laurent EM,et al. BioID-based identification of Skp Cullin F-box (SCF)β-TrCP1/2 E3 ligase substrates[J]. Mol Cell Proteomics,2015,14(7):1781-1795.
|
[44] |
Wu G,Lin Q,Lim TK,et al. The interactome of Singapore grouper iridovirus protein ICP18 as revealed by proximity-dependent BioID approach[J]. Virus Res,2021,291:198218.
|
[45] |
Das PP,Macharia MW,Lin Q,et al. In planta proximity-dependent biotin identification (BioID) identifies a TMV replication co-chaperone NbSGT1 in the vicinity of 126kDa replicase[J]. J Proteomics,2019,204:103402.
|
[46] |
Zhang YL,Li YY,Yang XX,et al. TurboID-based proximity labeling for in planta identification of protein-protein interaction networks[J]. J Vis Exp,2020(159):
|
[47] |
Trinkle-Mulcahy L. Recent advances in proximity-based labeling methods for interactome mapping[J]. F1000Res,2019,8:F1000 Faculty Rev-135.
|
[48] |
Kim DI,Roux KJ. Filling the void:proximity-based labeling of proteins in living cells[J]. Trends Cell Biol,2016,26(11):804-817.
|
[49] |
Liu X,Salokas K,Tamene F,et al. An AP-MS- and BioID-compatible MAC-tag enables comprehensive mapping of protein interactions and subcellular localizations[J]. Nat Commun,2018,9(1):1188.
|
[50] |
Motani K,Kosako H. BioID screening of biotinylation sites using the avidin-like protein Tamavidin 2-REV identifies global interactors of stimulator of interferon genes (STING) [J]. J Biol Chem,2020,295(32):11174-11183.
|
[51] |
Lee SY,Seo JK,Rhee HW. Methods in Molecular Biology [M].2008. New York:Springer,2019,97-105.
|
[1] | YANG Ruocong, DUAN Feipeng, CHAO Jiahong, TIAN Pengpeng, YAN Zhiyong, LI Shaojing. Advances of microRNA activity in innate immunity[J]. Journal of China Pharmaceutical University, 2017, 48(4): 396-406. DOI: 10.11665/j.issn.1000-5048.20170403 |
[2] | XIN Minhang, ZHANG Sanqi. Advances in PI3Kδ selective inhibitors[J]. Journal of China Pharmaceutical University, 2016, 47(5): 503-510. DOI: 10.11665/j.issn.1000-5048.20160501 |
[3] | JIANG Lu, CHEN Dandan, SUN Minjie, PING Qineng, ZHANG Can. Advances of wax matrix tablets[J]. Journal of China Pharmaceutical University, 2016, 47(4): 497-502. DOI: 10.11665/j.issn.1000-5048.20160418 |
[4] | YAO Guilin, WANG Haiyong, LU Tao. Advances of the uricosuric drugs[J]. Journal of China Pharmaceutical University, 2016, 47(4): 491-496. DOI: 10.11665/j.issn.1000-5048.20160417 |
[5] | ZHU Kuiniu, WU Zhengfeng, JIANG Cuihua, CAO Lanjie, ZHANG Jian, YIN Zhiqi. Advances on hypoglycemic activity and mechanism of triterpenoids[J]. Journal of China Pharmaceutical University, 2015, 46(6): 764-770. DOI: 10.11665/j.issn.1000-5048.20150622 |
[6] | CHEN Qingyu, ZHOU Jianping, HUO Meirong. Advances in the nanotechnology-based drug delivery systems of silymarin[J]. Journal of China Pharmaceutical University, 2015, 46(3): 376-384. DOI: 10.11665/j.issn.1000-5048.20150320 |
[7] | LIU Kejun, ZHANG Zhimin, RAN Ting, CHEN Hongli, LU Tao, CHEN Yadong. Advances in BET bromodomain protein inhibitors[J]. Journal of China Pharmaceutical University, 2015, 46(3): 264-271. DOI: 10.11665/j.issn.1000-5048.20150302 |
[8] | QI Likai, DI Bin. Advances in research on pharmaceutical impurities[J]. Journal of China Pharmaceutical University, 2015, 46(3): 257-263. DOI: 10.11665/j.issn.1000-5048.20150301 |
[9] | SUN Zhan-yi, CAI Hui, HUANG Zhi-hua, SHI Lei, CHEN Yong-xiang, LI Yan-mei. Advances of glycopeptide-associated tumor vaccines[J]. Journal of China Pharmaceutical University, 2012, 43(2): 97-106. |
[10] | XU Si-sheng, ZHANG Hui-bin, ZHOU Jin-pei, HUANG Jian-jun. Advances of new antidiabetic drugs[J]. Journal of China Pharmaceutical University, 2011, 42(2): 97-106. |