Citation: | LIU Meichen, LIANG Shuang, LIU Yongjun, ZHANG Na. Application of Au nanoplates in tumor therapy and diagnosis[J]. Journal of China Pharmaceutical University, 2022, 53(1): 99-104. DOI: 10.11665/j.issn.1000-5048.20220115 |
[1] |
. Nanoscale,2016,8(10):5706-5713.
|
[2] |
Huang P,Rong PF,Lin J,et al. Triphase interface synthesis of plasmonic gold bellflowers as near-infrared light mediated acoustic and thermal theranostics[J]. J Am Chem Soc,2014,136(23):8307-8313.
|
[3] |
Ma XQ,Cheng Y,Huang Y,et al. PEGylated gold nanoprisms for photothermal therapy at low laser power density[J]. RSC Adv,2015,5(99):81682-81688.
|
[4] |
Zeng J,Goldfeld D,Xia YN. A plasmon-assisted optofluidic (PAOF) system for measuring the photothermal conversion efficiencies of gold nanostructures and controlling an electrical switch[J]. Angew Chem Int Ed Engl,2013,52(15):4169-4173.
|
[5] |
Zhang ZY,Ni DL,Wang F,et al. In vitro study of enhanced photodynamic cancer cell killing effect by nanometer-thick gold nanosheets[J]. Nano Res,2020,13:3217-3223.
|
[6] |
Liang S,Deng XR,Ma PG,et al. Recent advances in nanomaterial-assisted combinational sonodynamic cancer therapy[J]. Adv Mater,2020,32(47):
|
[7] |
Balfourier A,Kolosnjaj-Tabi J,Luciani N,et al. Gold-based therapy:from past to present[J]. Proc Natl Acad Sci U S A,2020,117(37):22639-22648.
|
[8] |
Jokerst JV,Cole AJ,van de Sompel D,et al. Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice[J]. ACS Nano,2012,6(11):10366-10377.
|
[9] |
Tang YT,Wei JJ,Rong XY. Research progress in application of gold nanoparticles[J]. Liaoning Chem Ind (辽宁化工),2020,49(10):1256-1260.
|
[10] |
Xia J,Dong Z,Cai Y,et al. Morphological Growth and Theoretical Understanding of Gold and Other Noble Metal Nanoplates[J]. Chemistry,2018,24(58):15589-15595.
|
[11] |
Li Y,Fan ZY,Yang HW,et al. Research and application progress of gold nanoplates[J]. Precious Metals (贵金属),2021,42(2):84-92.
|
[12] |
Bui MN,Brockgreitens J,Abbas A. Gold nanoplate-enhanced chemiluminescence and macromolecular shielding for rapid microbial diagnostics[J]. Adv Healthc Mater,2018,7(13):
|
[13] |
Ni Y,Kan CX,Xu J,et al. The synthesis of high yield Au nanoplate and optimized optical properties[J]. Superlattices Microstruct,2018,114:124-142.
|
[14] |
Brann T,Patel D,Chauhan R,et al. Gold nanoplates as cancer-targeted photothermal actuators for drug delivery and triggered release[J]. J Nanomater,2016,2016:1-11.
|
[15] |
Lv W,Xia HT,Zhang KY,et al. Photothermal-triggered release of singlet oxygen from an endoperoxide-containing polymeric carrier for killing cancer cells[J]. Mater Horiz,2017,4(6):1185-1189.
|
[16] |
Jiang XQ,Liu RM,Tang PJ,et al. Controllably tuning the near-infrared plasmonic modes of gold nanoplates for enhanced optical coherence imaging and photothermal therapy[J]. RSC Adv,2015,5(98):80709-80718.
|
[17] |
Cao Y,Wu TT,Dai WH,et al. TiO2 nanosheets with the Au nanocrystal-decorated edge for mitochondria-targeting enhanced sonodynamic therapy[J]. Chem Mater,2019,31(21):9105-9114.
|
[18] |
Gao FL,He GL,Yin H,et al. Titania-coated 2D gold nanoplates as nanoagents for synergistic photothermal/sonodynamic therapy in the second near-infrared window[J]. Nanoscale,2019,11(5):2374-2384.
|
[19] |
Hwang A,Kim E,Moon J,et al. Atomically flat Au nanoplate platforms enable ultraspecific attomolar detection of protein biomarkers[J]. ACS Appl Mater Interfaces,2019,11(21):18960-18967.
|
[20] |
He SS,Hai J,Li TR,et al. Photochemical strategies for the green synthesis of ultrathin Au nanosheets using photoinduced free radical generation and their catalytic properties[J]. Nanoscale,2018,10(39):18805-18811.
|
[21] |
Liu YL,Ai KL,Lu LH. Nanoparticulate X-ray computed tomography contrast agents:from design validation to in vivo applications[J]. Acc Chem Res,2012,45(10):1817-1827.
|
[22] |
Zhao Y,Liu WF,Tian Y,et al. Anti-EGFR peptide-conjugated triangular gold nanoplates for computed tomography/photoacoustic imaging-guided photothermal therapy of non-small cell lung cancer[J]. ACS Appl Mater Interfaces,2018,10(20):16992-17003.
|
[23] |
Chen M,Tang SH,Guo ZD,et al. Core-shell Pd@Au nanoplates as theranostic agents for in-vivo photoacoustic imaging,CT imaging,and photothermal therapy[J]. Adv Mater,2014,26(48):8210-8216.
|
[24] |
Liu Y,Kang N,Lv J,et al. Deep photoacoustic/luminescence/magnetic resonance multimodal imaging in living subjects using high-efficiency upconversion nanocomposites[J]. Adv Mater,2016,28(30):6411-6419.
|
[25] |
Nie LM,Huang P,Li WT,et al. Early-stage imaging of nanocarrier-enhanced chemotherapy response in living subjects by scalable photoacoustic microscopy[J]. ACS Nano,2014,8(12):12141-12150.
|
[26] |
Zha ZB,Deng ZJ,Li YY,et al. Biocompatible polypyrrole nanoparticles as a novel organic photoacoustic contrast agent for deep tissue imaging[J]. Nanoscale,2013,5(10):4462-4467.
|
[27] |
Peng Y,Liu Y,Lu XL,et al. Ag-Hybridized plasmonic Au-triangular nanoplates:highly sensitive photoacoustic/Raman evaluation and improved antibacterial/photothermal combination therapy[J]. J Mater Chem B,2018,6(18):2813-2820.
|
1. |
康战国,王丹. 多领域中环己醇分析检测研究进展. 精细与专用化学品. 2023(01): 45-47 .
![]() |