Citation: | ZHU Yinxue, WANG Dexiang, KONG Ying, LU Wenjie, YE Hui, HAO Haiping. Genetic incorporation of unnatural amino acids into proteins and its translational application in biomedicine[J]. Journal of China Pharmaceutical University, 2022, 53(4): 383-391. DOI: 10.11665/j.issn.1000-5048.20220401 |
[1] |
. Int J Mol Sci,2019,20(4):916.
|
[2] |
Lv KM,Shao WY,Pedroso MM,et al. Enhancing the catalytic activity of a GH5 processive endoglucanase from Bacillus subtilis BS-5 by site-directed mutagenesis[J]. Int J Biol Macromol,2021,168:442-452.
|
[3] |
Doering JA,Lee SH,Kristiansen K,et al. In silico site-directed mutagenesis informs species-specific predictions of chemical susceptibility derived from the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool[J]. Toxicol Sci,2018,166(1):131-145.
|
[4] |
Drienovská I,Roelfes G. Expanding the enzyme universe with genetically encoded unnatural amino acids[J]. Nat Catal,2020,3(3):193-202.
|
[5] |
Dumas A,Lercher L,Spicer CD,et al. Designing logical codon reassignment - Expanding the chemistry in biology[J]. Chem Sci,2015,6(1):50-69.
|
[6] |
Cao L,Wang L. New covalent bonding ability for proteins[J]. Protein Sci,2022,31(2):312-322.
|
[7] |
Zambaldo C,Koh M,Nasertorabi F,et al. An orthogonal seryl-tRNA synthetase/tRNA pair for noncanonical amino acid mutagenesis in Escherichia coli[J]. Bioorg Med Chem,2020,28(20):115662.
|
[8] |
Hu LM,Qin XW,Huang YJ,et al. Thermophilic pyrrolysyl-tRNA synthetase mutants for enhanced mammalian genetic code expansion[J]. ACS Synth Biol,2020,9(10):2723-2736.
|
[9] |
Shao SD,Koh M,Schultz PG. Expanding the genetic code of the human hematopoietic system[J]. Proc Natl Acad Sci U S A,2020,117(16):8845-8849.
|
[10] |
Nguyen TA,Cigler M,Lang K. Expanding the genetic code to study protein-protein interactions[J]. Angew Chem Int Ed Engl,2018,57(44):14350-14361.
|
[11] |
Chung CZ,Amikura K,S?ll D. Using genetic code expansion for protein biochemical studies[J]. Front Bioeng Biotechnol,2020,8:1233.
|
[12] |
Bedard PL,Hyman DM,Davids MS,et al. Small molecules,big impact: 20 years of targeted therapy in oncology[J]. Lancet,2020,395(10229):1078-1088.
|
[13] |
Wang NX,Wang L. Genetically encoding latent bioreactive amino acids and the development of covalent protein drugs[J]. Curr Opin Chem Biol,2022,66:102106.
|
[14] |
Zhu HQ,Tang XL,Zheng RC,et al. Recent advancements in enzyme engineering via site-specific incorporation of unnatural amino acids[J]. World J Microbiol Biotechnol,2021,37(12):213.
|
[15] |
Smolskaya S,Andreev YA. Site-specific incorporation of unnatural amino acids into Escherichia coli recombinant protein: methodology development and recent achievement[J]. Biomolecules,2019,9(7):255.
|
[16] |
Xiang Z,Ren HY,Hu YS,et al. Adding an unnatural covalent bond to proteins through proximity-enhanced bioreactivity[J]. Nat Methods,2013,10(9):885-888.
|
[17] |
Coin I,Katritch V,Sun TT,et al. Genetically encoded chemical probes in cells reveal the binding path of urocortin-I to CRF class B GPCR[J]. Cell,2013,155(6):1258-1269.
|
[18] |
Xiang Z,Lacey VK,Ren HY,et al. Proximity-enabled protein crosslinking through genetically encoding haloalkane unnatural amino acids[J]. Angew Chem Int Ed Engl,2014,53(8):2190-2193.
|
[19] |
Yang B,Tang SB,Ma C,et al. Spontaneous and specific chemical cross-linking in live cells to capture and identify protein interactions[J]. Nat Commun,2017,8(1):2240.
|
[20] |
Furman JL,Kang MC,Choi S,et al. A genetically encoded aza-Michael acceptor for covalent cross-linking of protein-receptor complexes[J]. J Am Chem Soc,2014,136(23):8411-8417.
|
[21] |
Xuan WM,Li J,Luo XZ,et al. Genetic incorporation of a reactive isothiocyanate group into proteins[J]. Angew Chem Int Ed Engl,2016,55(34):10065-10068.
|
[22] |
Xuan WM,Shao SD,Schultz PG. Protein crosslinking by genetically encoded noncanonical amino acids with reactive aryl carbamate side chains[J]. Angew Chem Int Ed Engl,2017,56(18):5096-5100.
|
[23] |
Wang NX,Yang B,Fu CY,et al. Genetically encoding fluorosulfate-L-tyrosine to react with lysine,histidine,and tyrosine via SuFEx in proteins in vivo[J]. J Am Chem Soc,2018,140(15):4995-4999.
|
[24] |
Liu J,Cao L,Klauser PC,et al. A genetically encoded fluorosulfonyloxybenzoyl-L-lysine for expansive covalent bonding of proteins via SuFEx chemistry[J]. J Am Chem Soc,2021,143(27):10341-10351.
|
[25] |
Li QK,Chen Q,Klauser PC,et al. Developing covalent protein drugs via proximity-enabled reactive therapeutics[J]. Cell,2020,182(1):85-97.e16.
|
[26] |
Chin JW,Santoro SW,Martin AB,et al. Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli[J]. J Am Chem Soc,2002,124(31):9026-9027.
|
[27] |
Chin JW,Martin AB,King DS,et al. Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli[J]. Proc Natl Acad Sci USA,2002,99(17):11020-11024.
|
[28] |
Hino N,Okazaki Y,Kobayashi T,et al. Protein photo-cross-linking in mammalian cells by site-specific incorporation of a photoreactive amino acid[J]. Nat Methods,2005,2(3):201-206.
|
[29] |
Yanagisawa T,Hino N,Iraha F,et al. Wide-range protein photo-crosslinking achieved by a genetically encoded Nε-(benzyloxycarbonyl)lysine derivative with a diazirinyl moiety[J]. Mol Biosyst,2012,8(4):1131-1135.
|
[30] |
Tian YL,Jacinto MP,Zeng Y,et al. Genetically encoded 2-aryl-5-carboxytetrazoles for site-selective protein photo-cross-linking[J]. J Am Chem Soc,2017,139(17):6078-6081.
|
[31] |
Hu W,Yuan Y,Wang CH,et al. Genetically encoded residue-selective photo-crosslinker to capture protein-protein interactions in living cells[J]. Chem,2019,5(11):2955-2968.
|
[32] |
Liu J,Li SS,Aslam NA,et al. Genetically encoding photocaged quinone methide to multitarget protein residues covalently in vivo[J]. J Am Chem Soc,2019,141(24):9458-9462.
|
[33] |
Row RD,Nguyen SS,Ferreira AJ,et al. Chemically triggered crosslinking with bioorthogonal cyclopropenones[J]. ChemComm,2020,56(74):10883-10886.
|
[34] |
Roy A,Barman S,Padhan J,et al. Engineering an acetyllysine reader with a photocrosslinking amino acid for interactome profiling[J]. ChemComm,2021,57(77):9866-9869.
|
[35] |
Zhu XH,Akiyama T,Yokoyama T,et al. Stereoselective formation of β-O-4 structures mimicking softwood lignin biosynthesis:effects of solvent and the structures of quinone methide lignin models[J]. J Agric Food Chem,2019,67(25):6950-6961.
|
[36] |
Ito S,Sugumaran M,Wakamatsu K. Chemical reactivities of ortho-quinones produced in living organisms: fate of quinonoid products formed by tyrosinase and phenoloxidase action on phenols and catechols[J]. Int J Mol Sci,2020,21(17):6080.
|
[37] |
Liu J,Cheng RJ,Van Eps N,et al. Genetically encoded quinone methides enabling rapid,site-specific,and photocontrolled protein modification with amine reagents[J]. J Am Chem Soc,2020,142(40):17057-17068.
|
[38] |
Chatterjee A,Guo JT,Lee HS,et al. A genetically encoded fluorescent probe in mammalian cells[J]. J Am Chem Soc,2013,135(34):12540-12543.
|
[39] |
Charbon G,Brustad E,Scott KA,et al. Subcellular protein localization by using a genetically encoded fluorescent amino acid[J]. Chem Bio Chem,2011,12(12):1818-1821.
|
[40] |
Jagadish K,Borra R,Lacey V,et al. Expression of fluorescent cyclotides using protein trans-splicing for easy monitoring of cyclotide-protein interactions[J]. Angew Chem Int Ed Engl,2013,52(11):3126-3131.
|
[41] |
Alamudi SH,Satapathy R,Kim J,et al. Development of background-free tame fluorescent probes for intracellular live cell imaging[J]. Nat Commun,2016,7:11964.
|
[42] |
Macek B,Forchhammer K,Hardouin J,et al. Protein post-translational modifications in bacteria[J]. Nat Rev Microbiol,2019,17(11):651-664.
|
[43] |
Zhou JH,Zhao SW,Dunker AK. Intrinsically disordered proteins link alternative splicing and post-translational modifications to complex cell signaling and regulation[J]. J Mol Biol,2018,430(16):2342-2359.
|
[44] |
Müller MM. Post-translational modifications of protein backbones: unique functions,mechanisms,and challenges[J]. Biochemistry,2018,57(2):177-185.
|
[45] |
Hoppmann C,Wong A,Yang B,et al. Site-specific incorporation of phosphotyrosine using an expanded genetic code[J]. Nat Chem Biol,2017,13(8):842-844.
|
[46] |
Venkat S,Nannapaneni DT,Gregory C,et al. Genetically encoding thioacetyl-lysine as a non-deacetylatable analog of lysine acetylation in Escherichia coli[J]. FEBS Open Bio,2017,7(11):1805-1814.
|
[47] |
Luo XZ,Fu GS,Wang RE,et al. Genetically encoding phosphotyrosine and its nonhydrolyzable analog in bacteria[J]. Nat Chem Biol,2017,13(8):845-849.
|
[48] |
Fottner M,Brunner AD,Bittl V,et al. Site-specific ubiquitylation and SUMOylation using genetic-code expansion and sortase[J]. Nat Chem Biol,2019,15(3):276-284.
|
[49] |
Beránek V,Reinkemeier CD,Zhang MS,et al. Genetically encoded protein phosphorylation in mammalian cells[J]. Cell Chem Biol,2018,25(9):1067-1074.e5.
|
[50] |
Fu CY,Chen Q,Zheng F,et al. Genetically encoding a lipidated amino acid for extension of protein half-life in vivo[J]. Angew Chem Int Ed Engl,2019,58(5):1392-1396.
|
[1] | GUO Jiru, QIN Chunjun, HU Jing, CAO Xin, XU Yongxue, LIU Jiankai, YIN Jian. Quantitative determination of capsular polysaccharide, C-polysaccharide, phosphorus of carbohydrate antigens from Streptococcus pneumoniae by quantitative NMR using a single internal standard[J]. Journal of China Pharmaceutical University, 2024, 55(4): 472-477. DOI: 10.11665/j.issn.1000-5048.2024020502 |
[2] | YAO Jian, SHAO Lei, CHEN Daijie, ZHANG Yubin. Transcriptomic analysis of a spiramycin I-resistant Staphylococcus aureus mutant[J]. Journal of China Pharmaceutical University, 2017, 48(6): 738-744. DOI: 10.11665/j.issn.1000-5048.20170617 |
[3] | XING Ming-xun, JIA Sheng-mei, YUAN Peng, SHI Qi-yun, CHENG Wei, JIN Kun-qi, YU Lu. Inhibition of azithromycin on biofilms of Staphylococcus aureus[J]. Journal of China Pharmaceutical University, 2012, 43(6): 553-559. |
[4] | Properties and Type Determinations of Exopenicillinases from Staphylococcus aureus[J]. Journal of China Pharmaceutical University, 1995, (3): 183-186. |
[5] | Action of Cell-Bound Penicillinase in Mediating Resistance of Staphylococcus aureus[J]. Journal of China Pharmaceutical University, 1991, (6): 363-366. |
[6] | Protoplast-Dependent Plasmid Elimination of Staphylococcus Aureus[J]. Journal of China Pharmaceutical University, 1990, (3): 179-181. |
[7] | PLASMID ELIMINATION AND TRANSDUCTION OF STAPHYLOCOCCUS AUREUS RN1304 AND ITS ALBUS VARIANT[J]. Journal of China Pharmaceutical University, 1989, (3): 151-154. |
[8] | PROPERTIES OF A BETA-LACTAMASE FROM STAPHYLOCOCCUS AUREUS~*[J]. Journal of China Pharmaceutical University, 1988, (1): 38-41. |
[9] | EXTRACTION AND DETECTION OF ANTIBIOTIC RESISTANT PLASMID DNA IN STAPHYLOCOCUS AUREUS[J]. Journal of China Pharmaceutical University, 1985, (2): 53-58. |
[10] | ELIMINATION OF ANTIBIOTIC RESISTANT PLASMIDS IN STAPHYLOCOCCUS AUREUS[J]. Journal of China Pharmaceutical University, 1985, (2): 48-52. |