• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
SANG Ming, CHEN Yonggen, ZHOU Qian, CAO Peng, LU Wuguang. Isolation, identification and electrophysiological activity of BmK M2 from Buthus martensii Karsch venom[J]. Journal of China Pharmaceutical University, 2022, 53(4): 498-506. DOI: 10.11665/j.issn.1000-5048.20220413
Citation: SANG Ming, CHEN Yonggen, ZHOU Qian, CAO Peng, LU Wuguang. Isolation, identification and electrophysiological activity of BmK M2 from Buthus martensii Karsch venom[J]. Journal of China Pharmaceutical University, 2022, 53(4): 498-506. DOI: 10.11665/j.issn.1000-5048.20220413

Isolation, identification and electrophysiological activity of BmK M2 from Buthus martensii Karsch venom

Funds: This study was supported by the Jiangsu Province TCM Science and Technology Development Plan Project (No.MS2021027) and the Open Project of Chinese Materia Medica First-Class Discipline of Nanjing University of Chinese Medicine (No.2020YLXK012, No.2020YLXK024)
More Information
  • Received Date: August 15, 2021
  • Revised Date: June 26, 2022
  • This study aimed to isolate and identify novel toxin peptides targeting voltage-gated sodium channels (VGSGs) from the venom of the Buthus martensii Karsch (BmK) scorpion. Using G50-gel filtration, HPLC, peptide fingerprinting and amino acid sequencing, a novel sodium channel modulator, BmK M2, was identified from BMK scorpion. BmK M2 is a relatively abundant long chain polypeptide toxin in BmK scorpion venom with a molecular weight of 7 235.59, consisting of 64 amino acids and 4 pairs of disulfide bonds.Sequence alignment showed that the amino acid sequence of BmK M2 had high sequence and structural similarity to that of the discovered sodium channel toxins of BmK M1, BmK M3 and BmK M9, etc.BmK M2 is a potential new sodium channel modulator.Electrophysiological results revealed that BmK M2 can significantly enhance the activation, delay the steady-state inactivation and closed-state inactivation of Nav1.7, but has no activity on Nav1.8.BmK M2 can be used as a novel peptide probe for the study of the structure and function of Nav1.7 and the development of drugs targeting Nav1.7.
  • [1]
    . Toxins,2014,6(3):796-815.
    [2]
    Shao JH,Zhang R,Ge X,et al. Analgesic peptides in Buthus martensii karsch:a traditional Chinese animal medicine the analgesic peptides in scorpion venoms[J]. Asian J Tradit Med,2007,2(2):45-50.
    [3]
    Bennett DL,Clark AJ,Huang JY,et al. The role of voltage-gated sodium channels in pain signaling[J]. Physiol Rev,2019,99(2):1079-1151.
    [4]
    Dib-Hajj SD,Waxman SG. Sodium channels in human pain disorders:genetics and pharmacogenomics[J]. Annu Rev Neurosci,2019,42:87-106.
    [5]
    Osteen JD,Herzig V,Gilchrist J,et al. Selective spider toxins reveal a role for the Nav1.1 channel in mechanical pain[J]. Nature,2016,534(7608):494-499.
    [6]
    Nassar MA,Stirling LC,Forlani G,et al. Nociceptor-specific gene deletion reveals a major role for Nav1.7(PN1) in acute and inflammatory pain[J]. Proc Natl Acad Sci U S A,2004,101(34):12706-12711.
    [7]
    Thakor DK,Lin A,Matsuka Y,et al. Increased peripheral nerve excitability and local Nav1.8 mRNA up-regulation in painful neuropathy[J]. Mol Pain,2009,5:14.
    [8]
    Goudet C,Chi CW,Tytgat J. An overview of toxins and genes from the venom of the Asian scorpion Buthus martensi Karsch[J]. Toxicon,2002,40(9):1239-1258.
    [9]
    Rodríguez de la Vega RC,Possani LD. Overview of scorpion toxins specific for Na+ channels and related peptides:biodiversity,structure-function relationships and evolution[J]. Toxicon,2005,46(8):831-844.
    [10]
    Ye P,Jiao YL,Li ZW,et al. Scorpion toxin BmK I directly activates Nav1.8 in primary sensory neurons to induce neuronal hyperexcitability in rats[J]. Protein Cell,2015,6(6):443-452.
    [11]
    Xu YJ,Meng XX,Hou X,et al. A mutant of the Buthus martensii Karsch antitumor-analgesic peptide exhibits reduced inhibition to hNa v 1.4 and hNa v 1.5 channels while retaining analgesic activity[J]. J Biol Chem,2017,292(44):18270-18280.
    [12]
    Lu WG,Cheng XY,Chen J,et al. A Buthus martensii Karsch scorpion sting targets Nav1.7 in mice and mimics a phenotype of human chronic pain[J]. Pain,2022,163(2):e202-e214.
    [13]
    He XL,Deng JP,Wang M,et al. Structure of a new neurotoxin from the scorpion Buthus martensii Karsch at 1.76 A[J]. Acta Crystallogr D Biol Crystallogr,2000,56(Pt 1):25-33.
    [14]
    Chen YG,Sang M,Lu WG,et al. Development of a BmK scorpion quality control technology based on toxin peptide BmK NaTx-13[J]. J Nanjing Univ Tradit Chin Med(南京中医药大学学报),2020,36(4):509-516.
    [15]
    Lu WG,Hu LL,Yang J,et al. Isolation and pharmacological characterization of a new cytotoxic L-amino acid oxidase from Bungarus multicinctus snake venom[J]. J Ethnopharmacol,2018,213:311-320.
    [16]
    Xia Y,Hu L,Chen J,et al. Cloning and expression of recombinant BmkNaTx12,a new voltage-gated sodium channel from scorpion Buthus martensii Karsch[J]. J China Pharm Univ(中国药科大学学报),2017,48(2):220-226.
    [17]
    Herzog RI,Cummins TR,Ghassemi F,et al. Distinct repriming and closed-state inactivation kinetics of Nav1.6 and Nav1.7 sodium channels in mouse spinal sensory neurons[J]. J Physiol,2003,551(Pt 3):741-750.
    [18]
    Waxman SG,Dib-Hajj SD. The two sides of Nav1.7:painful and painless channelopathies[J]. Neuron,2019,101(5):765-767.
    [19]
    B?hring R,Covarrubias M. Mechanisms of closed-state inactivation in voltage-gated ion channels[J]. J Physiol,2011,589(Pt 3):461-479.
    [20]
    Urru M,Muzzi M,Coppi E,et al. Dexpramipexole blocks Nav1.8 sodium channels and provides analgesia in multiple nociceptive and neuropathic pain models[J]. Pain,2020,161(4):831-841.
  • Related Articles

    [1]ZHANG Yilun, ZHAO Xinyi, DONG Shubo, DONG Chao, SHEN Wenbin, DONG Haijuan. Isolation and identification of unknown impurities of alogliptin benzoate[J]. Journal of China Pharmaceutical University, 2020, 51(4): 488-493. DOI: 10.11665/j.issn.1000-5048.20200415
    [2]ZHOU Yongmei, SHI Xianming, MA Lei, ZHANG Sifang. Isolation and identification of Withaphysalins from Physalis minima[J]. Journal of China Pharmaceutical University, 2015, 46(1): 62-65. DOI: 10.11665/j.issn.1000-5048.20150107
    [3]CHENG Shou-xian, WANG Rong-hua, CHEN Jie-peng, DUAN Li-li, QIU Xue-lian. Isolation,purification and identification of paclitaxel from the fermented extracts of fungus ST026(Altemaria alternate var.monosporus[J]. Journal of China Pharmaceutical University, 2011, 42(6): 570-572.
    [4]PENG Chen, GE Hao, HE Shu-ying, GAO Xiang-dong. Molecular cloning,expression and identification of recombinant hyaluronan synthase from Pasteurella multocida[J]. Journal of China Pharmaceutical University, 2009, 40(6): 549-552.
    [5]Isolation and Identification of Two Taxane DiterpenoidCompounds[J]. Journal of China Pharmaceutical University, 2001, (3): 32-34.
    [6]Research on the Identification of Herba Sedi and the other Five Species of Sedum[J]. Journal of China Pharmaceutical University, 1996, (6): 15-19.
    [7]Investigation and Identification of Traditional Chinese Medicinal Materials Aci Pulvis[J]. Journal of China Pharmaceutical University, 1996, (1): 4-5.
    [8]MICROSCOPIC IDENTIFICATION ON THE TISSUES OF CHINESE DRUG CHONGLOU (RHIZOMA PARIDIS)[J]. Journal of China Pharmaceutical University, 1989, (6): 330-334.
    [9]MICROSCOPICAL IDENTIFICATION OF POWDERED ANIMAL DRUGS[J]. Journal of China Pharmaceutical University, 1985, (4): 27-34.
    [10]Song Xuehua, Xu Guojun, Jin Rongluan, Xu Luoshan. STUDIES ON THE IDENTIFICATION OF THE CHINESE DRUGS WUJIAPI[J]. Journal of China Pharmaceutical University, 1983, (1): 15-24+80.

Catalog

    Article views (116) PDF downloads (357) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return