Citation: | YU Jiayu, LIN Zezhi, CAO Wei, ZHANG Jianjun, WEI Yuanfeng, GAO Yuan, QIAN Shuai. Research progress of bio-metal organic frameworks in drug delivery system[J]. Journal of China Pharmaceutical University, 2023, 54(1): 23-33. DOI: 10.11665/j.issn.1000-5048.20221111003 |
[1] |
. Adv Healthc Mater,2018,7(10):
|
[2] |
Ge M,Wang YZ,Carraro F,et al. High-throughput electron diffraction reveals a hidden novel metal-organic framework for electrocatalysis[J]. Angew Chem Int Ed Engl,2021,60(20):11391-11397.
|
[3] |
He HM,Zhu QQ,Li CP,et al. Design of a highly-stable pillar-layer zinc(II) porous framework for rapid,reversible,and multi-responsive luminescent sensor in water[J]. Cryst Growth Des,2019,19(2):694-703.
|
[4] |
He T,Kong XJ,Li JR. Chemically stable metal-organic frameworks:rational construction and application expansion[J]. Acc Chem Res,2021,54(15):3083-3094.
|
[5] |
Yin ZL,Liu YL,Zhou SH,et al. Constructing zirconium based metal-organic frameworks based electrically-driven self-cleaning membrane for removal of tetracycline:effect of ligand substitution[J]. Chem Eng J,2022,450:138100.
|
[6] |
Yuan S,Feng L,Wang KC,et al. Stable metal-organic frameworks:design,synthesis,and applications[J]. Adv Mater,2018,30(37):
|
[7] |
Rabone J,Yue YF,Chong SY,et al. An adaptable peptide-based porous material[J]. Science,2010,329(5995):1053-1057.
|
[8] |
Martí-Gastaldo C,Warren JE,Stylianou KC,et al. Enhanced stability in rigid peptide-based porous materials[J]. Angew Chem Int Ed Engl,2012,51(44):11044-11048.
|
[9] |
Rezaee T,Fazel-Zarandi R,Karimi A,et al. Metal-organic frameworks for pharmaceutical and biomedical applications[J]. J Pharm Biomed Anal,2022,221:115026.
|
[10] |
Smaldone RA,Forgan RS,Furukawa H,et al. Metal-organic frameworks from edible natural products[J]. Angew Chem Int Ed Engl,2010,49(46):8630-8634.
|
[11] |
Levine DJ,Run?evski T,Kapelewski MT,et al. Olsalazine-based metal-organic frameworks as biocompatible platforms for H2 adsorption and drug delivery[J]. J Am Chem Soc,2016,138(32):10143-10150.
|
[12] |
Su HM,Sun FX,Jia JT,et al. A highly porous medical metal-organic framework constructed from bioactive curcumin[J]. Chem Commun,2015,51(26):5774-5777.
|
[13] |
Pooresmaeil M,Namazi H,Salehi R. Simple method for fabrication of metal-organic framework within a carboxymethylcellulose/graphene quantum dots matrix as a carrier for anticancer drug[J]. Int J Biol Macromol,2020,164:2301-2311.
|
[14] |
Rupam TH,Steenhaut T,Palash ML,et al. Thermochemical energy applications of green transition metal doped MIL-100(Fe)[J]. Chem Eng J,2022,448:137590.
|
[15] |
Xu MY,Li X,Zheng HY,et al. Anti-influenza virus study of composite material with MIL-101(Fe)-adsorbed favipiravir[J]. Molecules,2022,27(7):2288.
|
[16] |
Cheng H,Wei YF,Wang SR,et al. Improving tabletability of excipients by metal-organic framework-based cocrystallization:a study of mannitol and CaCl2[J]. Pharm Res,2020,37(7):130.
|
[17] |
Chen H,Yang J,Sun L,et al. Synergistic chemotherapy and photodynamic therapy of endophthalmitis mediated by zeolitic imidazolate framework-based drug delivery systems[J]. Small,2019,15(47):
|
[18] |
Fu CH,Zhou HQ,Tan LF,et al. Microwave-activated Mn-doped zirconium metal-organic framework nanocubes for highly effective combination of microwave dynamic and thermal therapies against cancer[J]. ACS Nano,2018,12(3):2201-2210.
|
[19] |
Tchalala MR,Bhatt PM,Chappanda KN,et al. Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air[J]. Nat Commun,2019,10(1):1328.
|
[20] |
Xiao LY,Yao SR,Liu J,et al. Efficient ultrasonic synthesis of Ni-based metal-organic framework for high performance battery-type supercapacitor electrodes[J]. Energy Tech,2022,10(2):2100350.
|
[21] |
Bashar BS,Kareem HA,Hasan YM,et al. Application of novel Fe3O4/Zn-metal organic framework magnetic nanostructures as an antimicrobial agent and magnetic nanocatalyst in the synthesis of heterocyclic compounds[J]. Front Chem,2022,10:1014731.
|
[22] |
Chen YW,Wu HX,Liu ZW,et al. Liquid-assisted mechanochemical synthesis of copper based MOF-505 for the separation of CO2 over CH4 or N2[J]. Ind Eng Chem Res,2018,57(2):703-709.
|
[23] |
Wei TH,Wu SH,Huang YD,et al. Rapid mechanochemical encapsulation of biocatalysts into robust metal-organic frameworks[J]. Nat Commun,2019,10(1):5002.
|
[24] |
Souza BE,Tan JC. Mechanochemical approaches towards the in situ confinement of 5-FU anti-cancer drug within MIL-100 (Fe) metal-organic framework[J]. CrystEngComm,2020,22(27):4526-4530.
|
[25] |
Huang C,Zhang SS,Quan YM,et al. Morphology and size controlled synthesis of metal-organic framework crystals for catalytic oxidation of toluene[J]. Solid State Sci,2022,123:106798.
|
[26] |
Zhou Y,Zhang MJ,Wang CF,et al. Solidification of volatile D-Limonene by cyclodextrin metal-organic framework for pulmonary delivery via dry powder inhalers:In vitro and in vivo evaluation[J]. Int J Pharm,2021,606:120825.
|
[27] |
Ennis C,Tay ACY,Falconer JL,et al. Nanoscale Cu(II) MOFs formed via microemulsion:vibrational mode characterization performed using a combined FTIR,synchrotron far-IR,and periodic DFT approach[J]. J Phys Chem C,2021,125(37):20426-20438.
|
[28] |
Zhang Q,Wu ZM,Lv Y,et al. Oxygen-assisted cathodic deposition of zeolitic imidazolate frameworks with controlled thickness[J]. Angew Chem Int Ed Engl,2019,58(4):1123-1128.
|
[29] |
Jee HW,Paeng KJ,Myung N,et al. Electrochemical deposition of a metal-organic framework and subsequent conversion to cobalt selenide[J]. ACS Appl Electron Mater,2020,2(5):1358-1364.
|
[30] |
Qian JF,Sun FA,Qin LZ. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals[J]. Mater Lett,2012,82:220-223.
|
[31] |
Li C,Hu XS,Tong W,et al. Ultrathin Manganese-based metal-organic framework nanosheets:low-cost and energy-dense lithium storage anodes with the coexistence of metal and ligand redox activities[J]. ACS Appl Mater Interfaces,2017,9(35):29829-29838.
|
[32] |
Chen CW,Feng XB,Zhu Q,et al. Microwave-assisted rapid synthesis of well-shaped MOF-74 (Ni) for CO2 efficient capture[J]. Inorg Chem,2019,58(4):2717-2728.
|
[33] |
Martinez V,Stolar T,Karadeniz B,et al. Advancing mechanochemical synthesis by combining milling with different energy sources[J]. Nat Rev Chem,2023,7(1):51-65.
|
[34] |
Prochowicz D,Soko?owski K,Justyniak I,et al. A mechanochemical strategy for IRMOF assembly based on pre-designed oxo-zinc precursors[J]. Chem Commun,2015,51(19):4032-4035.
|
[35] |
Stolar T,Batzdorf L,Lukin S,et al. In situ monitoring of the mechanosynthesis of the archetypal metal-organic framework HKUST-1:effect of liquid additives on the milling reactivity[J]. Inorg Chem,2017,56(11):6599-6608.
|
[36] |
Fidelli AM,Karadeniz B,Howarth AJ,et al. Green and rapid mechanosynthesis of high-porosity NU- and UiO-type metal-organic frameworks[J]. Chem Commun (Camb),2018,54(51):6999-7002.
|
[37] |
Ali-Moussa H,Navarro Amador R,Martinez J,et al. Synthesis and post-synthetic modification of UiO-67 type metal-organic frameworks by mechanochemistry[J]. Mater Lett,2017,197:171-174.
|
[38] |
Jin CJ,Chen ZJ,Shi SL,et al. Green and large-scale preparation of chiral metal-organic frameworks via mechanochemistry[J]. Inorg Chem,2022,61(31):12190-12196.
|
[39] |
Kriesten M,Vargas Schmitz J,Siegel J,et al. Shaping of flexible metal-organic frameworks:combining macroscopic stability and framework flexibility[J]. Eur J Inorg Chem,2019,2019(43):4700-4709.
|
[40] |
Shang WT,Zeng CT,Du Y,et al. Core-shell gold Nanorod@Metal-organic framework nanoprobes for multimodality diagnosis of glioma[J]. Adv Mater,2017,29(3):1604381.
|
[41] |
Li Y,Wen GL,Li JZ,et al. Synthesis and shaping of metal-organic frameworks:a review[J]. Chem Commun,2022,58(82):11488-11506.
|
[42] |
Varsha MV,Nageswaran G. Review—direct electrochemical synthesis of metal organic frameworks[J]. J Electrochem Soc,2020,167(15):155527.
|
[43] |
Cai MR,Ni BR,Hu XL,et al. An investigation of IRMOF-16 as a pH-responsive drug delivery carrier of curcumin[J]. J Sci Adv Mater Devices,2022,7(4):100507.
|
[44] |
Duan S,Dou BJ,Lin XZ,et al. Influence of active nanofiller ZIF-8 metal-organic framework (MOF) by microemulsion method on anticorrosion of epoxy coatings[J]. Colloids Surf A Physicochem Eng Aspects,2021,624:126836.
|
[45] |
Liu J,Wen QX,Zhou BZ,et al. Clickable ZIF-8 for cell-type-specific delivery of functional proteins[J]. ACS Chem Biol,2022,17(1):32-38.
|
[46] |
Tse JY,Kadota K,Nakajima T,et al. Crystalline rearranged CD-MOF particles obtained via spray-drying synthesis applied to inhalable formulations with high drug loading[J]. Cryst Growth Des,2022,22(2):1143-1154.
|
[47] |
Zhao KN,Guo T,Wang CF,et al. Glycoside scutellarin enhanced CD-MOF anchoring for laryngeal delivery[J]. Acta Pharm Sin B,2020,10(9):1709-1718.
|
[48] |
Zhou YX,Zhao YT,Niu BY,et al. Cyclodextrin-based metal-organic frameworks for pulmonary delivery of curcumin with improved solubility and fine aerodynamic performance[J]. Int J Pharm,2020,588:119777.
|
[49] |
Chen XJ,Guo T,Zhang KK,et al. Simultaneous improvement to solubility and bioavailability of active natural compound isosteviol using cyclodextrin metal-organic frameworks[J]. Acta Pharm Sin B,2021,11(9):2914-2923.
|
[50] |
Lv NN,Guo T,Liu BT,et al. Improvement in thermal stability of sucralose by γ-cyclodextrin metal-organic frameworks[J]. Pharm Res,2017,34(2):269-278.
|
[51] |
Lin WX,Hu Q,Jiang K,et al. A porphyrin-based metal-organic framework as a pH-responsive drug carrier[J]. J Solid State Chem,2016,237:307-312.
|
[52] |
Jiang K,Ni WS,Cao XY,et al. A nanosized anionic MOF with rich thiadiazole groups for controlled oral drug delivery[J]. Mater Today Bio,2022,13:100180.
|
[53] |
Li L,Han SS,Zhao SQ,et al. Chitosan modified metal-organic frameworks as a promising carrier for oral drug delivery[J]. RSC Adv,2020,10(73):45130-45138.
|
[54] |
Teplensky MH,Fantham M,Li P,et al. Temperature treatment of highly porous zirconium-containing metal-organic frameworks extends drug delivery release[J]. J Am Chem Soc,2017,139(22):7522-7532.
|
[55] |
Zhang FM,Dong H,Zhang X,et al. Postsynthetic modification of ZIF-90 for potential targeted codelivery of two anticancer drugs[J]. ACS Appl Mater Interfaces,2017,9(32):27332-27337.
|
[56] |
Leng X,Dong X,Wang WP,et al. Biocompatible Fe-based micropore metal-organic frameworks as sustained-release anticancer drug carriers[J]. Molecules,2018,23(10):2490.
|
[57] |
Yang YM,Xia F,Yang Y,et al. Litchi-like Fe3O4@Fe-MOF capped with HAp gatekeepers for pH-triggered drug release and anticancer effect[J]. J Mater Chem B,2017,5(43):8600-8606.
|
[58] |
Curcio M,Diaz-Gomez L,Cirillo G,et al. pH/redox dual-sensitive dextran nanogels for enhanced intracellular drug delivery[J]. Eur J Pharm Biopharm,2017,117:324-332.
|
[59] |
Wu Q,Du QJ,Sun XH,et al. MnMOF-based microwave-glutathione dual-responsive nano-missile for enhanced microwave Thermo-dynamic chemotherapy of drug-resistant tumors[J]. Chem Eng J,2022,439:135582.
|
[60] |
Cai MR,Zeng YW,Liu MT,et al. Construction of a multifunctional nano-scale metal-organic framework-based drug delivery system for targeted cancer therapy[J]. Pharmaceutics,2021,13(11):1945.
|
[61] |
Xue T,Xu CN,Wang Y,et al. Doxorubicin-loaded nanoscale metal-organic framework for tumor-targeting combined chemotherapy and chemodynamic therapy[J]. Biomater Sci,2019,7(11):4615-4623.
|
[62] |
Alves RC,Schulte ZM,Luiz MT,et al. Breast cancer targeting of a drug delivery system through postsynthetic modification of Curcumin@N3-bio-MOF-100 via click chemistry[J]. Inorg Chem,2021,60(16):11739-11744.
|
[63] |
Li B,Cao HZ,Zheng J,et al. Click modification of a metal-organic framework for two-photon photodynamic therapy with near-infrared excitation[J]. ACS Appl Mater Interfaces,2021,13(8):9739-9747.
|
1. |
马小翔,马泽源,刘亚月,周龙建,和羿帆,张翼. 仿突变生物合成调控对土曲霉C23-3次生代谢产物的影响. 生物技术通报. 2024(08): 275-287 .
![]() |