Citation: | YAN Wenjing, LIU Jianxing, JIN Liang. Advances in stem cells treatment of androgenetic alopecia[J]. Journal of China Pharmaceutical University, 2023, 54(3): 372-379. DOI: 10.11665/j.issn.1000-5048.2023020802 |
[1] |
Kanti V, Messenger A, Dobos G, et al. Evidence-based (S3) guideline for the treatment of androgenetic alopecia in women and in men-short version[J]. J Eur Acad Dermatol Venereol, 2018, 32(1): 11-22.
|
[2] |
Yang CC, Hsieh FN, Lin LY, et al. Higher body mass index is associated with greater severity of alopecia in men with male-pattern androgenetic alopecia in Taiwan: a cross-sectional study[J]. J Am Acad Dermatol, 2014, 70(2): 297-302.
|
[3] |
Zhou LB, Cao Q, Ding Q, et al. Transcription factor FOXC1 positively regulates SFRP1 expression in androgenetic alopecia[J]. Exp Cell Res, 2021, 404(1): 112618.
|
[4] |
Wang TL, Zhou C, Shen YW, et al. Prevalence of androgenetic alopecia in China: a community-based study in six cities[J]. Br J Dermatol, 2010, 162(4): 843-847.
|
[5] |
Anudeep TC, Jeyaraman M, Muthu S, et al. Advancing regenerative cellular therapies in non-scarring alopecia[J]. Pharmaceutics, 2022, 14(3): 612.
|
[6] |
Owczarczyk-Saczonek A, Krajewska-W?odarczyk M, Kruszewska A, et al. Therapeutic potential of stem cells in follicle regeneration[J]. Stem Cells Int, 2018, 2018: 1049641.
|
[7] |
Tumbar T, Guasch G, Greco V, et al. Defining the epithelial stem cell niche in skin[J]. Science, 2004, 303(5656): 359-363.
|
[8] |
Lin XY, Zhu L, He J. Morphogenesis, growth cycle and molecular regulation of hair follicles[J]. Front Cell Dev Biol, 2022, 10: 899095.
|
[9] |
Moon IJ, Yoon HK, Kim D, et al. Efficacy of asymmetric siRNA targeting androgen receptors for the treatment of androgenetic alopecia[J]. Mol Pharm, 2023, 20(1): 128-135.
|
[10] |
Liu QM, Tang YL, Huang Y, et al. Insights into male androgenetic alopecia using comparative transcriptome profiling: hypoxia-inducible factor-1 and Wnt/β-catenin signalling pathways[J]. Br J Dermatol, 2022, 187(6): 936-947.
|
[11] |
Salhab O, Khayat L, Alaaeddine N. Stem cell secretome as a mechanism for restoring hair loss due to stress, particularly alopecia areata: narrative review[J]. J Biomed Sci, 2022, 29(1): 77.
|
[12] |
Kwack MH, Sung YK, Chung EJ, et al. Dihydrotestosterone-inducible dickkopf 1 from balding dermal papilla cells causes apoptosis in follicular keratinocytes[J]. J Investig Dermatol, 2008, 128(2): 262-269.
|
[13] |
Mahmoud EA, Elgarhy LH, Hasby EA, et al. Dickkopf-1 expression in androgenetic alopecia and alopecia areata in male patients[J]. Am J Dermatopathol, 2019, 41(2): 122-127.
|
[14] |
Kitagawa T, Matsuda KI, Inui S, et al. Keratinocyte growth inhibition through the modification of Wnt signaling by androgen in balding dermal papilla cells[J]. J Clin Endocrinol Metab, 2009, 94(4): 1288-1294.
|
[15] |
Leirós GJ, Attorresi AI, Bala?á ME. Hair follicle stem cell differentiation is inhibited through cross-talk between Wnt/β-catenin and androgen signalling in dermal papilla cells from patients with androgenetic alopecia[J]. Br J Dermatol, 2012, 166(5): 1035-1042.
|
[16] |
Kretzschmar K, Cottle DL, Schweiger PJ, et al. The androgen receptor antagonizes Wnt/β-catenin signaling in epidermal stem cells[J]. J Investig Dermatol, 2015, 135(11): 2753-2763.
|
[17] |
Zhang JW, He XC, Tong WG, et al. Bone morphogenetic protein signaling inhibits hair follicle anagen induction by restricting epithelial stem/progenitor cell activation and expansion[J]. Stem Cells, 2006, 24(12): 2826-2839.
|
[18] |
Ceruti JM, Oppenheimer FM, Leirós GJ, et al. Androgens downregulate BMP2 impairing the inductive role of dermal papilla cells on hair follicle stem cells differentiation[J]. Mol Cell Endocrinol, 2021, 520: 111096.
|
[19] |
Oshimori N, Fuchs E. Paracrine TGF-β signaling counterbalances BMP-mediated repression in hair follicle stem cell activation[J]. Cell Stem Cell, 2012, 10(1): 63-75.
|
[20] |
Choi BY. Targeting Wnt/β-catenin pathway for developing therapies for hair loss[J]. Int J Mol Sci, 2020, 21(14): 4915.
|
[21] |
Xia JF, Minamino S, Kuwabara K, et al. Stem cell secretome as a new booster for regenerative medicine[J]. Biosci Trends, 2019, 13(4): 299-307.
|
[22] |
Shin DW. The molecular mechanism of natural products activating Wnt/β-catenin signaling pathway for improving hair loss[J]. Life, 2022, 12(11): 1856.
|
[23] |
Kelly Y, Blanco A, Tosti A. Androgenetic alopecia: an update of treatment options[J]. Drugs, 2016, 76(14): 1349-1364.
|
[24] |
Lachgar S, Charveron M, Gall Y, et al. Minoxidil upregulates the expression of vascular endothelial growth factor in human hair dermal papilla cells[J]. Br J Dermatol, 1998, 138(3): 407-411.
|
[25] |
Marubayashi A, Nakaya Y, Fukui K, et al. Minoxidil-induced hair growth is mediated by adenosine in cultured dermal papilla cells: possible involvement of sulfonylurea receptor 2B as a target of minoxidil[J]. J Investig Dermatol, 2001, 117(6): 1594-1600.
|
[26] |
Mella JM, Perret MC, Manzotti M, et al. Efficacy and safety of finasteride therapy for androgenetic alopecia: a systematic review[J]. Arch Dermatol, 2010, 146(10): 1141-1150.
|
[27] |
Rahimi-Ardabili B, Pourandarjani R, Habibollahi P, et al. Finasteride induced depression: a prospective study[J]. BMC Clin Pharmacol, 2006, 6: 7.
|
[28] |
Lucky AW, Piacquadio DJ, Ditre CM, et al. A randomized, placebo-controlled trial of 5% and 2% topical minoxidil solutions in the treatment of female pattern hair loss[J]. J Am Acad Dermatol, 2004, 50(4): 541-553.
|
[29] |
Biehl JK, Russell B. Introduction to stem cell therapy[J]. J Cardiovasc Nurs, 2009, 24(2): 98-103.
|
[30] |
Frank CN, Petrosyan A. Kidney regenerative medicine: promises and limitations[J].Curr Transplant Rep, 2020, 7(2): 81-89.
|
[31] |
Miteva K, Pappritz K, El-Shafeey M, et al. Mesenchymal stromal cells modulate monocytes trafficking in coxsackievirus B3-induced myocarditis[J]. Stem Cells Transl Med, 2017, 6(4): 1249-1261.
|
[32] |
Tsuchiya A, Takeuchi S, Watanabe T, et al. Mesenchymal stem cell therapies for liver cirrhosis: MSCs as conducting cells for improvement of liver fibrosis and regeneration[J]. Inflamm Regen, 2019, 39: 18.
|
[33] |
Xu TK, Zhang YY, Chang PY, et al. Mesenchymal stem cell-based therapy for radiation-induced lung injury[J]. Stem Cell Res Ther, 2018, 9(1): 18.
|
[34] |
Hartman N, Loyal J, Fabi S. Update on exosomes in aesthetics[J]. Dermatol Surg, 2022, 48(8): 862-865.
|
[35] |
Marquez-Curtis LA, Janowska-Wieczorek A, McGann LE, et al. Mesenchymal stromal cells derived from various tissues: biological, clinical and cryopreservation aspects[J]. Cryobiology, 2015, 71(2): 181-197.
|
[36] |
Epstein GK, Epstein JS. Mesenchymal stem cells and stromal vascular fraction for hair loss: current status[J]. Facial Plast Surg Clin North Am, 2018, 26(4): 503-511.
|
[37] |
Festa E, Fretz J, Berry R, et al. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling[J]. Cell, 2011, 146(5): 761-771.
|
[38] |
Fukuoka H, Narita K, Suga H. Hair regeneration therapy: application of adipose-derived stem cells[J]. Curr Stem Cell Res Ther, 2017, 12(7): 531-534.
|
[39] |
Andjelkov K, Eremin II, Korac A. Different levels of EGF, VEGF, IL-6, MCP-1, MCP-3, IP-10, Eotaxin and MIP-1α in the adipose-derived stem cell secretome in androgenetic alopecia[J]. Exp Dermatol, 2022, 31(6): 936-942.
|
[40] |
Greco V, Chen T, Rendl M, et al. A two-step mechanism for stem cell activation during hair regeneration[J]. Cell Stem Cell, 2009, 4(2): 155-169.
|
[41] |
Lolli F, Pallotti F, Rossi A, et al. Androgenetic alopecia: a review[J]. Endocrine, 2017, 57(1): 9-17.
|
[42] |
Ohyama M, Zheng Y, Paus R, et al. The mesenchymal component of hair follicle neogenesis: background, methods and molecular characterization[J]. Exp Dermatol, 2010, 19(2): 89-99.
|
[43] |
Li JL, Zhao BH, Yao SY, et al. Dermal papillacell-derived exosomes regulate hair follicle stem cell proliferation via LEF1[J]. Int J Mol Sci, 2023, 24(4): 3961.
|
[44] |
Osada A, Iwabuchi T, Kishimoto J, et al. Long-term culture of mouse vibrissal dermal papilla cells and de novo hair follicle induction[J]. Tissue Eng, 2007, 13(5): 975-982.
|
[45] |
Luo Y, Du H, Wang J, et al. Clinical effect of human dermal papilla cells conditioned medium on female androgenetic alopecia[J]. Med J Nat Def Force Northwest China (西北国防医学杂志),2011,32(1):1-3.
|
[46] |
Bak DH, Choi MJ, Kim SR, et al. Human umbilical cord blood mesenchymal stem cells engineered to overexpress growth factors accelerate outcomes in hair growth[J]. Korean J Physiol Pharmacol, 2018, 22(5): 555-566.
|
[47] |
Chung JY, Song M, Ha CW, et al. Comparison of articular cartilage repair with different hydrogel-human umbilical cord blood-derived mesenchymal stem cell composites in a rat model[J]. Stem Cell Res Ther, 2014, 5(2): 39.
|
[48] |
Li XY, Zheng ZH, Li XY, et al. Treatment of foot disease in patients with type 2 diabetes mellitus using human umbilical cord blood mesenchymal stem cells: response and correction of immunological anomalies[J]. Curr Pharm Des, 2013, 19(27): 4893-4899.
|
[49] |
Oh HA, Kwak J, Kim BJ, et al. Migration inhibitory factor in conditioned medium from human umbilical cord blood-derived mesenchymal stromal cells stimulates hair growth[J]. Cells, 2020, 9(6): 1344.
|
[50] |
Kassem DH, Kamal MM. Wharton''s jelly MSCs: potential weapon to sharpen for our battle against DM[J]. Trends Endocrinol Metab, 2020, 31(4): 271-273.
|
[51] |
Aljitawi OS, Xiao YH, Zhang D, et al. Generating CK19-positive cells with hair-like structures from Wharton''s jelly mesenchymal stromal cells[J]. Stem Cells Dev, 2013, 22(1): 18-26.
|
[52] |
Dong L, Hao HJ, Xia L, et al. Treatment of MSCs with Wnt1a-conditioned medium activates DP cells and promotes hair follicle regrowth[J]. Sci Rep, 2014, 4: 5432.
|