• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
YAN Wenjing, LIU Jianxing, JIN Liang. Advances in stem cells treatment of androgenetic alopecia[J]. Journal of China Pharmaceutical University, 2023, 54(3): 372-379. DOI: 10.11665/j.issn.1000-5048.2023020802
Citation: YAN Wenjing, LIU Jianxing, JIN Liang. Advances in stem cells treatment of androgenetic alopecia[J]. Journal of China Pharmaceutical University, 2023, 54(3): 372-379. DOI: 10.11665/j.issn.1000-5048.2023020802

Advances in stem cells treatment of androgenetic alopecia

Funds: This study was supported by the National Natural Science Foundation of China (No.81570696); the National High Technology Research and Development Program of China (863 Program) (No.2015AA020314); and Jiangsu Provincial Fund for Distinguished Young Scholars (No.BK20140029)
More Information
  • Received Date: February 07, 2023
  • Revised Date: May 09, 2023
  • Androgenetic alopecia (AGA) is the most prominent type of progressive hair loss in humans.At present, medication is the main treatment for AGA, however, drug therapy has significant side-effects. Stem cells provide a new strategy for the treatment of AGA, because of their role in tissue repair and maintenance of microenvironmental homeostasis.This paper reviews the pathogenesis of AGA, discusses the defects of traditional drug therapy,and discusses the research progress of stem cells and stem cell derivatives in the treatment of AGA, in order to provide a comprehensive review of the prospects of stem cell therapy for AGA.
  • [1]
    Kanti V, Messenger A, Dobos G, et al. Evidence-based (S3) guideline for the treatment of androgenetic alopecia in women and in men-short version[J]. J Eur Acad Dermatol Venereol, 2018, 32(1): 11-22.
    [2]
    Yang CC, Hsieh FN, Lin LY, et al. Higher body mass index is associated with greater severity of alopecia in men with male-pattern androgenetic alopecia in Taiwan: a cross-sectional study[J]. J Am Acad Dermatol, 2014, 70(2): 297-302.
    [3]
    Zhou LB, Cao Q, Ding Q, et al. Transcription factor FOXC1 positively regulates SFRP1 expression in androgenetic alopecia[J]. Exp Cell Res, 2021, 404(1): 112618.
    [4]
    Wang TL, Zhou C, Shen YW, et al. Prevalence of androgenetic alopecia in China: a community-based study in six cities[J]. Br J Dermatol, 2010, 162(4): 843-847.
    [5]
    Anudeep TC, Jeyaraman M, Muthu S, et al. Advancing regenerative cellular therapies in non-scarring alopecia[J]. Pharmaceutics, 2022, 14(3): 612.
    [6]
    Owczarczyk-Saczonek A, Krajewska-W?odarczyk M, Kruszewska A, et al. Therapeutic potential of stem cells in follicle regeneration[J]. Stem Cells Int, 2018, 2018: 1049641.
    [7]
    Tumbar T, Guasch G, Greco V, et al. Defining the epithelial stem cell niche in skin[J]. Science, 2004, 303(5656): 359-363.
    [8]
    Lin XY, Zhu L, He J. Morphogenesis, growth cycle and molecular regulation of hair follicles[J]. Front Cell Dev Biol, 2022, 10: 899095.
    [9]
    Moon IJ, Yoon HK, Kim D, et al. Efficacy of asymmetric siRNA targeting androgen receptors for the treatment of androgenetic alopecia[J]. Mol Pharm, 2023, 20(1): 128-135.
    [10]
    Liu QM, Tang YL, Huang Y, et al. Insights into male androgenetic alopecia using comparative transcriptome profiling: hypoxia-inducible factor-1 and Wnt/β-catenin signalling pathways[J]. Br J Dermatol, 2022, 187(6): 936-947.
    [11]
    Salhab O, Khayat L, Alaaeddine N. Stem cell secretome as a mechanism for restoring hair loss due to stress, particularly alopecia areata: narrative review[J]. J Biomed Sci, 2022, 29(1): 77.
    [12]
    Kwack MH, Sung YK, Chung EJ, et al. Dihydrotestosterone-inducible dickkopf 1 from balding dermal papilla cells causes apoptosis in follicular keratinocytes[J]. J Investig Dermatol, 2008, 128(2): 262-269.
    [13]
    Mahmoud EA, Elgarhy LH, Hasby EA, et al. Dickkopf-1 expression in androgenetic alopecia and alopecia areata in male patients[J]. Am J Dermatopathol, 2019, 41(2): 122-127.
    [14]
    Kitagawa T, Matsuda KI, Inui S, et al. Keratinocyte growth inhibition through the modification of Wnt signaling by androgen in balding dermal papilla cells[J]. J Clin Endocrinol Metab, 2009, 94(4): 1288-1294.
    [15]
    Leirós GJ, Attorresi AI, Bala?á ME. Hair follicle stem cell differentiation is inhibited through cross-talk between Wnt/β-catenin and androgen signalling in dermal papilla cells from patients with androgenetic alopecia[J]. Br J Dermatol, 2012, 166(5): 1035-1042.
    [16]
    Kretzschmar K, Cottle DL, Schweiger PJ, et al. The androgen receptor antagonizes Wnt/β-catenin signaling in epidermal stem cells[J]. J Investig Dermatol, 2015, 135(11): 2753-2763.
    [17]
    Zhang JW, He XC, Tong WG, et al. Bone morphogenetic protein signaling inhibits hair follicle anagen induction by restricting epithelial stem/progenitor cell activation and expansion[J]. Stem Cells, 2006, 24(12): 2826-2839.
    [18]
    Ceruti JM, Oppenheimer FM, Leirós GJ, et al. Androgens downregulate BMP2 impairing the inductive role of dermal papilla cells on hair follicle stem cells differentiation[J]. Mol Cell Endocrinol, 2021, 520: 111096.
    [19]
    Oshimori N, Fuchs E. Paracrine TGF-β signaling counterbalances BMP-mediated repression in hair follicle stem cell activation[J]. Cell Stem Cell, 2012, 10(1): 63-75.
    [20]
    Choi BY. Targeting Wnt/β-catenin pathway for developing therapies for hair loss[J]. Int J Mol Sci, 2020, 21(14): 4915.
    [21]
    Xia JF, Minamino S, Kuwabara K, et al. Stem cell secretome as a new booster for regenerative medicine[J]. Biosci Trends, 2019, 13(4): 299-307.
    [22]
    Shin DW. The molecular mechanism of natural products activating Wnt/β-catenin signaling pathway for improving hair loss[J]. Life, 2022, 12(11): 1856.
    [23]
    Kelly Y, Blanco A, Tosti A. Androgenetic alopecia: an update of treatment options[J]. Drugs, 2016, 76(14): 1349-1364.
    [24]
    Lachgar S, Charveron M, Gall Y, et al. Minoxidil upregulates the expression of vascular endothelial growth factor in human hair dermal papilla cells[J]. Br J Dermatol, 1998, 138(3): 407-411.
    [25]
    Marubayashi A, Nakaya Y, Fukui K, et al. Minoxidil-induced hair growth is mediated by adenosine in cultured dermal papilla cells: possible involvement of sulfonylurea receptor 2B as a target of minoxidil[J]. J Investig Dermatol, 2001, 117(6): 1594-1600.
    [26]
    Mella JM, Perret MC, Manzotti M, et al. Efficacy and safety of finasteride therapy for androgenetic alopecia: a systematic review[J]. Arch Dermatol, 2010, 146(10): 1141-1150.
    [27]
    Rahimi-Ardabili B, Pourandarjani R, Habibollahi P, et al. Finasteride induced depression: a prospective study[J]. BMC Clin Pharmacol, 2006, 6: 7.
    [28]
    Lucky AW, Piacquadio DJ, Ditre CM, et al. A randomized, placebo-controlled trial of 5% and 2% topical minoxidil solutions in the treatment of female pattern hair loss[J]. J Am Acad Dermatol, 2004, 50(4): 541-553.
    [29]
    Biehl JK, Russell B. Introduction to stem cell therapy[J]. J Cardiovasc Nurs, 2009, 24(2): 98-103.
    [30]
    Frank CN, Petrosyan A. Kidney regenerative medicine: promises and limitations[J].Curr Transplant Rep, 2020, 7(2): 81-89.
    [31]
    Miteva K, Pappritz K, El-Shafeey M, et al. Mesenchymal stromal cells modulate monocytes trafficking in coxsackievirus B3-induced myocarditis[J]. Stem Cells Transl Med, 2017, 6(4): 1249-1261.
    [32]
    Tsuchiya A, Takeuchi S, Watanabe T, et al. Mesenchymal stem cell therapies for liver cirrhosis: MSCs as conducting cells for improvement of liver fibrosis and regeneration[J]. Inflamm Regen, 2019, 39: 18.
    [33]
    Xu TK, Zhang YY, Chang PY, et al. Mesenchymal stem cell-based therapy for radiation-induced lung injury[J]. Stem Cell Res Ther, 2018, 9(1): 18.
    [34]
    Hartman N, Loyal J, Fabi S. Update on exosomes in aesthetics[J]. Dermatol Surg, 2022, 48(8): 862-865.
    [35]
    Marquez-Curtis LA, Janowska-Wieczorek A, McGann LE, et al. Mesenchymal stromal cells derived from various tissues: biological, clinical and cryopreservation aspects[J]. Cryobiology, 2015, 71(2): 181-197.
    [36]
    Epstein GK, Epstein JS. Mesenchymal stem cells and stromal vascular fraction for hair loss: current status[J]. Facial Plast Surg Clin North Am, 2018, 26(4): 503-511.
    [37]
    Festa E, Fretz J, Berry R, et al. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling[J]. Cell, 2011, 146(5): 761-771.
    [38]
    Fukuoka H, Narita K, Suga H. Hair regeneration therapy: application of adipose-derived stem cells[J]. Curr Stem Cell Res Ther, 2017, 12(7): 531-534.
    [39]
    Andjelkov K, Eremin II, Korac A. Different levels of EGF, VEGF, IL-6, MCP-1, MCP-3, IP-10, Eotaxin and MIP-1α in the adipose-derived stem cell secretome in androgenetic alopecia[J]. Exp Dermatol, 2022, 31(6): 936-942.
    [40]
    Greco V, Chen T, Rendl M, et al. A two-step mechanism for stem cell activation during hair regeneration[J]. Cell Stem Cell, 2009, 4(2): 155-169.
    [41]
    Lolli F, Pallotti F, Rossi A, et al. Androgenetic alopecia: a review[J]. Endocrine, 2017, 57(1): 9-17.
    [42]
    Ohyama M, Zheng Y, Paus R, et al. The mesenchymal component of hair follicle neogenesis: background, methods and molecular characterization[J]. Exp Dermatol, 2010, 19(2): 89-99.
    [43]
    Li JL, Zhao BH, Yao SY, et al. Dermal papillacell-derived exosomes regulate hair follicle stem cell proliferation via LEF1[J]. Int J Mol Sci, 2023, 24(4): 3961.
    [44]
    Osada A, Iwabuchi T, Kishimoto J, et al. Long-term culture of mouse vibrissal dermal papilla cells and de novo hair follicle induction[J]. Tissue Eng, 2007, 13(5): 975-982.
    [45]
    Luo Y, Du H, Wang J, et al. Clinical effect of human dermal papilla cells conditioned medium on female androgenetic alopecia[J]. Med J Nat Def Force Northwest China (西北国防医学杂志),2011,32(1):1-3.
    [46]
    Bak DH, Choi MJ, Kim SR, et al. Human umbilical cord blood mesenchymal stem cells engineered to overexpress growth factors accelerate outcomes in hair growth[J]. Korean J Physiol Pharmacol, 2018, 22(5): 555-566.
    [47]
    Chung JY, Song M, Ha CW, et al. Comparison of articular cartilage repair with different hydrogel-human umbilical cord blood-derived mesenchymal stem cell composites in a rat model[J]. Stem Cell Res Ther, 2014, 5(2): 39.
    [48]
    Li XY, Zheng ZH, Li XY, et al. Treatment of foot disease in patients with type 2 diabetes mellitus using human umbilical cord blood mesenchymal stem cells: response and correction of immunological anomalies[J]. Curr Pharm Des, 2013, 19(27): 4893-4899.
    [49]
    Oh HA, Kwak J, Kim BJ, et al. Migration inhibitory factor in conditioned medium from human umbilical cord blood-derived mesenchymal stromal cells stimulates hair growth[J]. Cells, 2020, 9(6): 1344.
    [50]
    Kassem DH, Kamal MM. Wharton''s jelly MSCs: potential weapon to sharpen for our battle against DM[J]. Trends Endocrinol Metab, 2020, 31(4): 271-273.
    [51]
    Aljitawi OS, Xiao YH, Zhang D, et al. Generating CK19-positive cells with hair-like structures from Wharton''s jelly mesenchymal stromal cells[J]. Stem Cells Dev, 2013, 22(1): 18-26.
    [52]
    Dong L, Hao HJ, Xia L, et al. Treatment of MSCs with Wnt1a-conditioned medium activates DP cells and promotes hair follicle regrowth[J]. Sci Rep, 2014, 4: 5432.

Catalog

    Article views (855) PDF downloads (469) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return