Citation: | XU Yao, PENG Ying, WANG Guangji, SUN Jianguo. Inhibition of total flavonoids from Abelmoschus Manihot on cytochrome P450[J]. Journal of China Pharmaceutical University, 2023, 54(2): 208-217. DOI: 10.11665/j.issn.1000-5048.2023021402 |
[1] |
Yin SX, Cai ZC, Chen CH, et al. Comparative study on chemical constituents of medicinal and non-medicinal parts of Flos abelmoschus manihot, based on metabolite profiling coupled with multivariate statistical analysis[J]. Horticulturae, 2022, 8(4): 317.
|
[2] |
Xia KY, Zhang CL, Cao ZY, et al. Chemical constituents from Corolla abelmoschi[J]. Strait Pharm J (海峡药学), 2019, 31(9): 58-61.
|
[3] |
Yin SX, Wei lf, Mei YQ, et al. Simultaneous determination of multiple bioactive constituents in Abelmoschi Corolla by UFLC-QTRAP-MS/MS[J]. China J Chin Mater Med (中国中药杂志), 2021, 46(10): 2527-2536.
|
[4] |
Li SH, Li N, Qin SS, et al. Purification, characterization and bioactivities of polysaccharides from the stalk of Abelmoschus manihot (L.) medic[J]. Food Sci Technol Res, 2020, 26(5): 611-621.
|
[5] |
Luan F, Wu QH, Yang Y, et al. Traditional uses, chemical constituents, biological properties, clinical settings, and toxicities of Abelmoschus manihot L. : a comprehensive review[J]. Front Pharmacol, 2020, 11: 1068.
|
[6] |
Han WB, Ma Q, Liu YL, et al. Huangkui capsule alleviates renal tubular epithelial-mesenchymal transition in diabetic nephropathy via inhibiting NLRP3 inflammasome activation and TLR4/NF-κB signaling[J]. Phytomedicine, 2019, 57: 203-214.
|
[7] |
Deng JF, He ZP, Li XR, et al. Huangkui capsule attenuates lipopolysaccharide-induced acute lung injury and macrophage activation by suppressing inflammation and oxidative stress in mice[J]. Evid Based Complement Alternat Med, 2021, 2021: 6626483.
|
[8] |
Cai HD, Tao WW, Su SL, et al. Antidepressant activity of flavonoid ethanol extract of Abelmoschus manihot Corolla with BDNF up-regulation in the hippocampus[J]. Acta Pharm Sin (药学学报), 2017, 52(2): 222-228.
|
[9] |
Gao YN, Liang ZH, Lv NY, et al. Exploring the total flavones of Abelmoschus manihot against IAV-induced lung inflammation by network pharmacology[J]. BMC Complement Med Ther, 2022, 22(1): 36.
|
[10] |
Pan XX, Tao JH, Jiang S, et al. Characterization and immunomodulatory activity of polysaccharides from the stems and leaves of Abelmoschus manihot and a sulfated derivative[J]. Int J Biol Macromol, 2018, 107: 9-16.
|
[11] |
Hou JH, Qian JJ, Li ZL, et al. Bioactive compounds from Abelmoschus manihot l. alleviate the progression of multiple myeloma in mouse model and improve bone marrow microenvironment[J]. Onco Targets Ther, 2020, 13: 959-973.
|
[12] |
Yang BL, Zhu P, Li YR, et al. Total flavone of Abelmoschus manihot suppresses epithelial-mesenchymal transition via interfering transforming growth factor-β1 signaling in Crohn''s disease intestinal fibrosis[J]. World J Gastroenterol, 2018, 24(30): 3414-3425.
|
[13] |
Yang ZZ, Tang HT, Shao Q, et al. Enrichment and purification of the bioactive flavonoids from flower of Abelmoschus manihot (L.) medic using macroporous resins[J]. Molecules, 2018, 23(10): 2649.
|
[14] |
Lai XY, Liang H, Zhao YY, et al. Simultaneous determination of seven active flavonols in the flowers of Abelmoschus manihot by HPLC[J]. J Chromatogr Sci, 2009, 47(3): 206-210.
|
[15] |
Dahlinger D, Duechting S, Nuecken D, et al. Development and validation of an in vitro, seven-in-one human cytochrome P450 assay for evaluation of both direct and time-dependent inhibition[J]. J Pharmacol Toxicol Methods, 2016, 77: 66-75.
|
[16] |
Liu ZX, Liu SJ, Ju WZ, et al. Effects of Huangkui Capsule on the P450 activities in rats[J]. Chin J Clin Pharmacol Ther (中国临床药理学与治疗学), 2010, 15(4): 367-372.
|
[17] |
Moon YJ, Wang XD, Morris ME. Dietary flavonoids: effects on xenobiotic and carcinogen metabolism[J]. Toxicol Vitro, 2006, 20(2): 187-210.
|
[18] |
Ortiz-Andrade R, Araujo-León JA, Sánchez-Recillas A, et al. Toxicological screening of four bioactive citroflavonoids: in vitro, in vivo, and in silico approaches[J]. Molecules, 2020, 25(24): 5959.
|
[19] |
Kahma H, Aurinsalo L, Neuvonen M, et al. An automated cocktail method for in vitro assessment of direct and time-dependent inhibition of nine major cytochrome P450 enzymes-application to establishing CYP2C8 inhibitor selectivity[J]. Eur J Pharm Sci, 2021, 162: 105810.
|
[20] |
Jia YW, Peng Y, Sun JG, et al. "N-in-One Cocktail" method to evaluate inhibition effects of 4-hydroxylmethylphenyl-O-β-D-pyranosyl alloside on CYP450 enzymes[J]. Chin J Clin Pharmacol Ther (中国临床药理学与治疗学), 2014, 19(12): 1371-1375.
|
[21] |
Lou D, Bao SS, Li YH, et al. Inhibitory mechanisms of myricetin on human and rat liver cytochrome P450 enzymes[J]. Eur J Drug Metab Pharmacokinet, 2019, 44(5): 611-618.
|
[22] |
Rastogi H, Jana S. Evaluation of inhibitory effects of caffeic acid and quercetin on human liver cytochrome P450 activities[J]. Phytother Res, 2014, 28(12): 1873-1878.
|
[23] |
Ye LH, Yan MZ, Kong LT, et al. In vitro inhibition of quercetin and its glycosides on P450 enzyme activities[J]. Chin Pharm J(中国药学杂志), 2014, 49(12): 1051-1055.
|
[24] |
Fantoukh OI, Dale OR, Parveen A, et al. Safety assessment of phytochemicals derived from the globalized South African rooibos tea (Aspalathus linearis) through interaction with CYP, PXR, and P-gp[J]. J Agric Food Chem, 2019, 67(17): 4967-4975.
|
[25] |
Cui MY, Li CH, Kong XY, et al. Influence of Flavonoids from Galium verum L. on the activities of cytochrome P450 isozymes and pharmacokinetic and pharmacodynamic of warfarin in rats[J]. Phcog Mag, 2019, 15(65): 645-651.
|
[26] |
Zhang D, Wu GD, Hao HM, et al. Effect of total flavonoids of Hippophae rhamnoides L. on the activity and mRNA expression of CYP450 in rats[J]. Phcog Mag, 2022, 18(77): 82-88.
|
[27] |
Bi YF, Zhu HB, Pi ZF, et al. Effects of flavonoides from the leaves of Acanthopanax on the activity of CYP450 isozymes in rat liver microsomes by a UPLC-MS/MS and cocktail probe substrates method[J]. Chem J Chin Univ (高等学校化学学报), 2013, 34(5): 1067-1071.
|
[28] |
Mohutsky M, Hall SD. Irreversible enzyme inhibition kinetics and drug-drug interactions[J]. Methods Mol Biol, 2021, 2342: 51-88.
|
[29] |
Gao J, Zhang YJ, Lei XQ, et al. Risk assessment of the inhibition of hydroxygenkwanin on human and rat cytochrome P450 by cocktail method[J]. Toxicol Vitro, 2022, 79: 105281.
|
[30] |
Ramos CH, Rolim TS, de Souza TP, et al. Effect of food phenolic compounds on the activity of rat liver CYP2C subfamily enzymes evaluated by a newly validated method of high-performance liquid chromatography[J]. Rev Virtual Quim, 2019, 11(5): 1444-1456.
|
[31] |
Lu J, Ding TG, Qin X, et al. In vitro and in vivo evaluation of cucurbitacin E on rat hepatic CYP2C11 expression and activity using LC-MS/MS[J]. Sci China Life Sci, 2017, 60(2): 215-224.
|
[32] |
Guo YJ, Zheng SL. Effect of myricetin on cytochrome P450 isoforms CYP1A2, CYP2C9 and CYP3A4 in rats[J]. Pharmazie, 2014, 69(4): 306-310.
|
[33] |
Liu ZX, Zhou L, Ju WZ, et al. Simultaneous determination of 5 major compositions in Huangkui capsules by HPLC[J]. China Pharm (中国药房), 2011, 22(12): 1129-1131.
|
[34] |
Hou CS, Yang ZH, Sun XB. Simultaneous determination of tolbutamide and its metabolite 4-hydroxytolbutamide, chlorzoxazone in rat plasma by LC-MS-MS and application to pharmacokinetic study[J]. Chin J Exp Tradit Med Formulae (中国实验方剂学杂志), 2013, 19(12): 144-150.
|
[1] | MENG Yue, YAO Siyuan, GAO Xiangdong, CHEN Song. Effects and mechanisms of SNP-9 on Aβ25-35-induced damage in bEnd.3 cells[J]. Journal of China Pharmaceutical University, 2022, 53(3): 333-339. DOI: 10.11665/j.issn.1000-5048.20220311 |
[2] | CHEN Yingjie, GAO Xiangdong, CHEN Song. Effects and mechanisms of FGF21 on neuronal damage induced by rotenone[J]. Journal of China Pharmaceutical University, 2020, 51(6): 718-723. DOI: 10.11665/j.issn.1000-5048.20200611 |
[3] | LI Wei, XU Xuefen. Mechanism of resveratrol induced apoptosis on human prostate cancer cell line DU145[J]. Journal of China Pharmaceutical University, 2018, 49(6): 711-717. DOI: 10.11665/j.issn.1000-5048.20180612 |
[4] | FENG Quanfu, BI Lei, YAN Xiaojing, YANG Ye, CHEN Weiping. Inhibition of tetramethypyrazine on proliferation of HepG2 cells and its effects on the pathway of mitochondrial apoptosis[J]. Journal of China Pharmaceutical University, 2015, 46(3): 350-354. DOI: 10.11665/j.issn.1000-5048.20150315 |
[5] | QI Cuiling, ZHOU Xinlei, YE Jie, YANG Yang, ZHANG Qianqian, LI Jiangchao, WANG Lijing. Andrographolide induces Tb cell apoptosis by activating Caspase-3/PARP[J]. Journal of China Pharmaceutical University, 2013, 44(6): 559-562. DOI: 10.11665/j.issn.1000-5048.20130614 |
[6] | REN Jie, XIN Wenqun, CHEN Xin, HU Kun. Apoptosis induced by podophyllotoxin derivative OAMDP in HeLa cells[J]. Journal of China Pharmaceutical University, 2013, 44(3): 267-271. DOI: 10.11665/j.issn.1000-5048.20130316 |
[7] | LEI Hui, TAN Jiani, LI Shaoping, LI Haitao, JI Hui. Turmeric oil induces human hepatoma cell apoptosis via mitochondrial pathway[J]. Journal of China Pharmaceutical University, 2013, 44(3): 263-266. DOI: 10.11665/j.issn.1000-5048.20130315 |
[8] | Effects of panaxatriol saponins on the differentiation and apoptosis of MC3T3-E1 cells[J]. Journal of China Pharmaceutical University, 2010, 41(3): 273-377. |
[9] | Mechanism of TNF Related Apoptosis Inducing Ligand Inducing Apoptosis and Its Pharmaceutical Exploitation[J]. Journal of China Pharmaceutical University, 2004, (4): 91-94. |
[10] | Effect of Nerve Regeneration Factor on Apoptosis Cells in the Newborn Rat Spinal Cord[J]. Journal of China Pharmaceutical University, 2002, (1): 60-63. |