Citation: | LIU Yanhong, CHEN Liqing, ZHANG Xintong, GAO Zhonghao, HUANG Wei. Research progress of tumor immunomodulation strategies based on nanodrug delivery system[J]. Journal of China Pharmaceutical University, 2023, 54(1): 5-14. DOI: 10.11665/j.issn.1000-5048.2023021501 |
[1] |
. J Exp Clin Cancer Res,2019,38(1):268.
|
[2] |
Chen DS,Mellman I. Oncology meets immunology:the cancer-immunity cycle[J]. Immunity,2013,39(1):1-10.
|
[3] |
Li QQ,Shi ZQ,Zhang F,et al. Symphony of nanomaterials and immunotherapy based on the cancer-immunity cycle[J]. Acta Pharm Sin B,2022,12(1):107-134.
|
[4] |
Starzer AM,Preusser M,Berghoff AS. Immune escape mechanisms and therapeutic approaches in cancer:the cancer-immunity cycle[J]. Ther Adv Med Oncol,2022,14:17588359221096219.
|
[5] |
Schlake T,Thess A,Thran M,et al. mRNA as novel technology for passive immunotherapy[J]. Cell Mol Life Sci,2019,76(2):301-328.
|
[6] |
Ma S,Li XC,Wang XY,et al. Current progress in CAR-T cell therapy for solid tumors[J]. Int J Biol Sci,2019,15(12):2548-2560.
|
[7] |
Chen LP,Han X. Anti-PD-1/PD-L1 therapy of human cancer:past,present,and future[J]. J Clin Invest,2015,125(9):3384-3391.
|
[8] |
Saxena M,van der Burg SH,Melief CJM,et al. Therapeutic cancer vaccines[J]. Nat Rev Cancer,2021,21(6):360-378.
|
[9] |
Yu MH,Yang W,Yue WW,et al. Targeted cancer immunotherapy:nanoformulation engineering and clinical translation[J]. Adv Sci (Weinh),2022,9(35):
|
[10] |
Liu ZG,Jiang W,Nam J,et al. Immunomodulating nanomedicine for cancer therapy[J]. Nano Lett,2018,18(11):6655-6659.
|
[11] |
Francis MJ. Recent advances in vaccine technologies[J]. Vet Clin North Am Small Anim Pract,2018,48(2):231-241.
|
[12] |
Davodabadi F,Sarhadi M,Arabpour J,et al. Breast cancer vaccines:new insights into immunomodulatory and nano-therapeutic approaches[J]. J Control Release,2022,349:844-875.
|
[13] |
Mi Y,4th Hagan CT,Vincent BG,et al. Emerging nano-/ microapproaches for cancer immunotherapy[J]. Adv Sci (Weinh),2019,6(6):1801847.
|
[14] |
Chen J,Fang HP,Hu YY,et al. Combining mannose receptor mediated nanovaccines and gene regulated PD-L1 blockade for boosting cancer immunotherapy[J]. Bioact Mater,2022,7:167-180.
|
[15] |
Zhou L,Hou B,Wang DG,et al. Engineering polymeric prodrug nanoplatform for vaccination immunotherapy of cancer[J]. Nano Lett,2020,20(6):4393-4402.
|
[16] |
Yang R,Xu J,Xu LG,et al. Cancer cell membrane-coated adjuvant nanoparticles with mannose modification for effective anticancer vaccination[J]. ACS Nano,2018,12(6):5121-5129.
|
[17] |
Lim JP,Gleeson PA. Macropinocytosis:an endocytic pathway for internalising large gulps[J]. Immunol Cell Biol,2011,89(8):836-843.
|
[18] |
Yang C,Zhang F,Chen FM,et al. Biomimetic nanovaccines potentiating dendritic cell internalization via CXCR4-mediated macropinocytosis[J]. Adv Healthc Mater,2023,12(5):
|
[19] |
Guo JF,Zou YF,Huang L. Nano delivery of chemotherapeutic ICD inducers for tumor immunotherapy[J]. Small Methods,2023:
|
[20] |
Li YH,Liu XH,Zhang X,et al. Immunogenic cell death inducers for enhanced cancer immunotherapy[J]. Chem Commun,2021,57(91):12087-12097.
|
[21] |
Banstola A,Poudel K,Kim JO,et al. Recent progress in stimuli-responsive nanosystems for inducing immunogenic cell death[J]. J Control Release,2021,337:505-520.
|
[22] |
Zhou JY,Wang GY,Chen YZ,et al. Immunogenic cell death in cancer therapy:present and emerging inducers[J]. J Cell Mol Med,2019,23(8):4854-4865.
|
[23] |
Song L,Hao Y,Wang CJ,et al. Liposomal oxaliplatin prodrugs loaded with metformin potentiate immunotherapy for colorectal cancer[J]. J Control Release,2022,350:922-932.
|
[24] |
Qiu XY,Qu Y,Guo BB,et al. Micellar paclitaxel boosts ICD and chemo-immunotherapy of metastatic triple negative breast cancer[J]. J Control Release,2022,341:498-510.
|
[25] |
Liang RJ,Liu LL,He HM,et al. Oxygen-boosted immunogenic photodynamic therapy with gold nanocages@manganese dioxide to inhibit tumor growth and metastases[J]. Biomaterials,2018,177:149-160.
|
[26] |
Li W,Yang J,Luo LH,et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death[J]. Nat Commun,2019,10(1):3349.
|
[27] |
Emens LA,Silverstein SC,Khleif S,et al. Toward integrative cancer immunotherapy:targeting the tumor microenvironment[J]. J Transl Med,2012,10:70.
|
[28] |
Cao J,Yan Q. Cancer epigenetics,tumor immunity,and immunotherapy[J]. Trends Cancer,2020,6(7):580-592.
|
[29] |
Xiang XN,Wang JG,Lu D,et al. Targeting tumor-associated macrophages to synergize tumor immunotherapy[J]. Signal Transduct Target Ther,2021,6(1):75.
|
[30] |
Han SL,Wang WJ,Wang SF,et al. Tumor microenvironment remodeling and tumor therapy based on M2-like tumor associated macrophage-targeting nano-complexes[J]. Theranostics,2021,11(6):2892-2916.
|
[31] |
Liaw K,Reddy R,Sharma A,et al. Targeted systemic dendrimer delivery of CSF-1R inhibitor to tumor-associated macrophages improves outcomes in orthotopic glioblastoma[J]. Bioeng Transl Med,2021,6(2):
|
[32] |
Zhao Y,Rahmy S,Liu ZM,et al. Rational targeting of immunosuppressive neutrophils in cancer[J]. Pharmacol Ther,2020,212:107556.
|
[33] |
Zhang YT,Guoqiang L,Sun MM,et al. Targeting and exploitation of tumor-associated neutrophils to enhance immunotherapy and drug delivery for cancer treatment[J]. Cancer Biol Med,2020,17(1):32-43.
|
[34] |
Que HY,Fu QM,Lan TX,et al. Tumor-associated neutrophils and neutrophil-targeted cancer therapies[J]. Biochim Biophys Acta Rev Cancer,2022,1877(5):188762.
|
[35] |
Tang LG,Wang ZT,Mu QC,et al. Targeting neutrophils for enhanced cancer theranostics[J]. Adv Mater,2020,32(33):
|
[36] |
Mao XQ,Xu J,Wang W,et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment:new findings and future perspectives[J]. Mol Cancer,2021,20(1):131.
|
[37] |
Panagi M,Mpekris F,Chen PW,et al. Polymeric micelles effectively reprogram the tumor microenvironment to potentiate nano-immunotherapy in mouse breast cancer models[J]. Nat Commun,2022,13(1):7165.
|
[38] |
Tan YN,Huang JD,Li YP,et al. Near-infrared responsive membrane nanovesicles amplify homologous targeting delivery of anti-PD immunotherapy against metastatic tumors[J]. Adv Healthc Mater,2022,11(6):
|
[39] |
Tang XY,Luo ZL,Xiong YL,et al. The proliferative role of immune checkpoints in tumors:double regulation[J]. Cancers,2022,14(21):5374.
|
[40] |
Archilla-Ortega A,Domuro C,Martin-Liberal J,et al. Blockade of novel immune checkpoints and new therapeutic combinations to boost antitumor immunity[J]. J Exp Clin Cancer Res,2022,41(1):62.
|
[41] |
Yang L,Pang YL,Moses HL. TGF-β and immune cells:an important regulatory axis in the tumor microenvironment and progression[J]. Trends Immunol,2010,31(6):220-227.
|
[42] |
Liu M,Wang X,Wang L,et al. Targeting the IDO1 pathway in cancer:from bench to bedside[J]. J Hematol Oncol,2018,11(1):100.
|
[43] |
Haist M,Mail?nder V,Bros M. Nanodrugs targeting T cells in tumor therapy[J]. Front Immunol,2022,13:912594.
|
[44] |
Xue S,Hu M,Iyer V,et al. Blocking the PD-1/PD-L1 pathway in glioma:a potential new treatment strategy[J]. J Hematol Oncol,2017,10(1):81.
|
[45] |
Gao Y,Ouyang ZJ,Yang C,et al. Overcoming T cell exhaustion via immune checkpoint modulation with a dendrimer-based hybrid nano complex[J]. Adv Healthc Mater,2021,10(19):
|
[46] |
Yang GX,Zhou D,Dai Y,et al. Construction of PEI-EGFR-PD-L1-siRNA dual functional nano-vaccine and therapeutic efficacy evaluation for lung cancer[J]. Thorac Cancer,2022,13(21):2941-2950.
|
[47] |
Huo JL,Wang YT,Fu WJ,et al. The promising immune checkpoint LAG-3 in cancer immunotherapy:from basic research to clinical application[J]. Front Immunol,2022,13:956090.
|
[48] |
Wan WJ,Huang G,Wang Y,et al. Coadministration of iRGD peptide with ROS-sensitive nanoparticles co-delivering siFGL1 and siPD-L1 enhanced tumor immunotherapy[J]. Acta Biomater,2021,136:473-484.
|
[49] |
Selvan SR,Dowling JP,Kelly WK,et al. Indoleamine 2,3-dioxygenase (IDO):biology and target in cancer immunotherapies[J]. Curr Cancer Drug Targets,2016,16(9):755-764.
|
[50] |
Mei KC,Liao YP,Jiang JH,et al. Liposomal delivery of mitoxantrone and a cholesteryl indoximod prodrug provides effective chemo-immunotherapy in multiple solid tumors[J]. ACS Nano,2020,14(10):13343-13366.
|
1. |
陈哲铭,葛婧雯,陈延玮,张政,赵双双,赵峰,陈宝定. 纳米材料介导焦亡促进抗肿瘤免疫治疗的作用机制及研究进展. 江苏大学学报(医学版). 2024(04): 290-296 .
![]() | |
2. |
戴婷,陈萍,李帅,路蕾,周翔,欧阳永长. 基于OBE理念的基因工程载体情境教学探索. 科技风. 2024(30): 103-105 .
![]() |