• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
WANG Heng, SUN Hao, LIAO Hong. Reaserch progress of microglial phagocytosis in ischemic stroke[J]. Journal of China Pharmaceutical University, 2023, 54(4): 399-409. DOI: 10.11665/j.issn.1000-5048.2023022106
Citation: WANG Heng, SUN Hao, LIAO Hong. Reaserch progress of microglial phagocytosis in ischemic stroke[J]. Journal of China Pharmaceutical University, 2023, 54(4): 399-409. DOI: 10.11665/j.issn.1000-5048.2023022106

Reaserch progress of microglial phagocytosis in ischemic stroke

Funds: This study was supported by the National Natural Science Foundation of China (No.82073831)
More Information
  • Received Date: February 20, 2023
  • Revised Date: May 13, 2023
  • Ischemic stroke is a major disease affecting human health, and its pathological mechanism has not been fully elucidated. Microglia are important immune cells in the central nervous system, and participate in the pathological process of ischemic stroke.Following an ischemic stroke, a surge in activated microglia occurs, migrating and congregating within the afflicted regions.These microglia engulf deceased cells or fragments, releasing inflammatory or nutritive factors, thereby participating in the pathogenesis of ischemic stroke.The phagocytosis of microglia plays an important role in cerebral ischemic injury and rehabilitation. This article summarizes the molecular mechanism of microglial phagocytosis and reviews the research progress of microglial phagocytosis in ischemic stroke, and discusses the diversity and complexity of microglial phagocytosis in cerebral ischemic injury and rehabilitation, so as to provide new ideas for the treatment and drug development of ischemic stroke.
  • [1]
    Feigin VL, Brainin M, Norrving B, et al. World stroke organization (WSO): global stroke fact sheet 2022[J]. Int J Stroke, 2022, 17(1): 18-29.
    [2]
    Joy MT, Carmichael ST. Encouraging an excitable brain state: mechanisms of brain repair in stroke[J]. Nat Rev Neurosci, 2021, 22(1): 38-53.
    [3]
    Mendelson SJ, Prabhakaran S.Diagnosis and management of transient ischemic attack and acute ischemic stroke: a review[J]. JAMA, 2021, 325(11): 1088-1098.
    [4]
    Kierdorf K, Prinz M. Microglia in steady state[J]. J Clin Invest, 2017, 127(9): 3201-3209.
    [5]
    Borst K, Dumas AA, Prinz M.Microglia: immune and non-immune functions[J]. Immunity, 2021, 54(10): 2194-2208.
    [6]
    Prinz M, Jung S, Priller J.Microglia biology: one century of evolving concepts[J]. Cell, 2019, 179(2): 292-311.
    [7]
    Fu RY, Shen QY, Xu PF, et al. Phagocytosis of microglia in the central nervous system diseases[J]. Mol Neurobiol, 2014, 49(3): 1422-1434.
    [8]
    Brown GC, Neher JJ.Microglial phagocytosis of live neurons[J]. Nat Rev Neurosci, 2014, 15(4): 209-216.
    [9]
    Anwar S, Rivest S. Alzheimer’s disease: microglia targets and their modulation to promote amyloid phagocytosis and mitigate neuroinflammation[J]. Expert Opin Ther Targets, 2020, 24(4): 331-344.
    [10]
    Butler CA, Popescu AS, Kitchener EJA, et al. Microglial phagocytosis of neurons in neurodegeneration, and its regulation[J]. J Neurochem, 2021, 158(3): 621-639.
    [11]
    Puigdellívol M, Milde S, Vilalta A, et al. The microglial P2Y6 receptor mediates neuronal loss and memory deficits in neurodegeneration[J]. Cell Rep, 2021, 37(13): 110148.
    [12]
    Sipe GO, Lowery RL, Tremblay Mè, et al. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex[J]. Nat Commun, 2016, 7: 10905.
    [13]
    Diaz-Aparicio I, Paris I, Sierra-Torre V, et al. Microglia actively remodel adult hippocampal neurogenesis through the phagocytosis secretome[J]. J Neurosci, 2020, 40(7): 1453-1482.
    [14]
    Ravichandran KS.Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways[J]. Immunity, 2011, 35(4): 445-455.
    [15]
    Mecca C, Giambanco I, Donato R, et al. Microglia and aging: the role of the TREM2-DAP12 and CX3CL1-CX3CR1 axes[J]. Int J Mol Sci, 2018, 19(1): 318.
    [16]
    Gunner G, Cheadle L, Johnson KM, et al. Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling[J]. Nat Neurosci, 2019, 22(7): 1075-1088.
    [17]
    Paolicelli RC, Bolasco G, Pagani F, et al. Synaptic pruning by microglia is necessary for normal brain development[J]. Science, 2011, 333(6048): 1456-1458.
    [18]
    Sapkota A, Gaire BP, Kang MG, et al. S1P2 contributes to microglial activation and M1 polarization following cerebral ischemia through ERK1/2 and JNK[J]. Sci Rep, 2019, 9(1): 12106.
    [19]
    Leventis PA, Grinstein S. The distribution and function of phosphatidylserine in cellular membranes[J]. Annu Rev Biophys, 2010, 39: 407-427.
    [20]
    Lemke G. How macrophages deal with death[J]. Nat Rev Immunol, 2019, 19(9): 539-549.
    [21]
    Scott-Hewitt N, Perrucci F, Morini R, et al. Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia[J]. EMBO J, 2020, 39(16): e105380.
    [22]
    Cockram TOJ, Dundee JM, Popescu AS, et al. The phagocytic code regulating phagocytosis of mammalian cells[J]. Front Immunol, 2021, 12: 629979.
    [23]
    Pa?dassi H, Tacnet-Delorme P, Garlatti V, et al. C1q binds phosphatidylserine and likely acts as a multiligand-bridging molecule in apoptotic cell recognition[J]. J Immunol, 2008, 180(4): 2329-2338.
    [24]
    Cornell J, Salinas S, Huang HY, et al. Microglia regulation of synaptic plasticity and learning and memory[J]. Neural Regen Res, 2022, 17(4): 705-716.
    [25]
    Cong Q, Soteros BM, Huo A, et al. C1q and SRPX2 regulate microglia mediated synapse elimination during early development in the visual thalamus but not the visual cortex[J]. Glia, 2022, 70(3): 451-465.
    [26]
    Dejanovic B, Huntley MA, De Mazière A, et al. Changes in the synaptic proteome in tauopathy and rescue of tau-induced synapse loss by C1q antibodies[J]. Neuron, 2018, 100(6): 1322-1336.e7.
    [27]
    Hong S, Beja-Glasser VF, Nfonoyim BM, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models[J]. Science, 2016, 352(6286): 712-716.
    [28]
    Kelley SM,Ravichandran KS. Putting the brakes on phagocytosis: “don’t-eat-me” signaling in physiology and disease[J]. EMBO Rep, 2021, 22(6):e52564.
    [29]
    Logtenberg MEW, Scheeren FA, Schumacher TN. The CD47-SIRPα immune checkpoint[J]. Immunity, 2020, 52(5): 742-752.
    [30]
    Lehrman EK, Wilton DK, Litvina EY, et al. CD47 protects synapses from excess microglia-mediated pruning during development[J]. Neuron, 2018, 100(1): 120-134.e6.
    [31]
    Ding X, Wang J, Huang M, et al. Loss of microglial SIRPα promotes synaptic pruning in preclinical models of neurodegeneration[J]. Nat Commun, 2021, 12(1): 2030.
    [32]
    Puigdellívol M, Allendorf DH, Brown GC. Sialylation and galectin-3 in microglia-mediated neuroinflammation and neurodegeneration[J]. Front Cell Neurosci, 2020, 14: 162.
    [33]
    Pluvinage JV, Haney MS, Smith BAH, et al. CD22 blockade restores homeostatic microglial phagocytosis in ageing brains[J]. Nature, 2019, 568(7751): 187-192.
    [34]
    Linnartz B, Kopatz J, Tenner AJ, et al. Sialic acid on the neuronal glycocalyx prevents complement C1 binding and complement receptor-3-mediated removal by microglia[J]. J Neurosci, 2012, 32(3): 946-952.
    [35]
    Choi YH, Laaker C, Hsu M, et al. Molecular mechanisms of neuroimmune crosstalk in the pathogenesis of stroke[J]. Int J Mol Sci, 2021, 22(17): 9486.
    [36]
    Hu XM, Leak RK, Shi YJ, et al. Microglial and macrophage polarization—new prospects for brain repair[J]. Nat Rev Neurol, 2015, 11(1): 56-64.
    [37]
    Wen RX, Shen H, Huang SX, et al. P2Y6 receptor inhibition aggravates ischemic brain injury by reducing microglial phagocytosis[J]. CNS Neurosci Ther, 2020, 26(4): 416-429.
    [38]
    Rudolph M, Schmeer CW, Günther M, et al. Microglia-mediated phagocytosis of apoptotic nuclei is impaired in the adult murine hippocampus after stroke[J]. Glia, 2021, 69(8): 2006-2022.
    [39]
    Xu SB, Lu JN, Shao AW, et al. Glial cells: role of the immune response in ischemic stroke[J]. Front Immunol, 2020, 11: 294.
    [40]
    Neher JJ, Emmrich JV, Fricker M, et al. Phagocytosis executes delayed neuronal death after focal brain ischemia[J]. Proc Natl Acad Sci U S A, 2013, 110(43): E4098-E4107.
    [41]
    Cai W, Dai XJ, Chen J, et al. STAT6/Arg1 promotes microglia/macrophage efferocytosis and inflammation resolution in stroke mice[J]. JCI Insight, 2019, 4(20): e131355.
    [42]
    Gy?rffy BA, Kun J, T?r?k G, et al. Local apoptotic-like mechanisms underlie complement-mediated synaptic pruning[J]. Proc Natl Acad Sci U S A, 2018, 115(24): 6303-6308.
    [43]
    Surugiu R, Catalin B, Dumbrava D, et al. Intracortical administration of the complement C3 receptor antagonist trifluoroacetate modulates microglia reaction after brain injury[J]. Neural Plast, 2019, 2019: 1071036.
    [44]
    Wang J, Zhang QG, Lu YJ, et al. Ganglioside GD3 is up-regulated in microglia and regulates phagocytosis following global cerebral ischemia[J]. J Neurochem, 2021, 158(3): 737-752.
    [45]
    Qin C, Yang S, Chu YH, et al. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions[J]. Signal Transduct Target Ther, 2022, 7(1): 215.
    [46]
    Milde S, Brown GC. Knockout of the P2Y6 receptor prevents peri-infarct neuronal loss after transient, focal ischemia in mouse brain[J]. Int J Mol Sci, 2022, 23(4): 2304.
    [47]
    Yang J, Cao LL, Wang XP, et al. Neuronal extracellular vesicle derived miR-98 prevents salvageable neurons from microglial phagocytosis in acute ischemic stroke[J]. Cell Death Dis, 2021, 12(1): 23.
    [48]
    Sen MK, Mahns DA, Coorssen JR, et al. The roles of microglia and astrocytes in phagocytosis and myelination: insights from the cuprizone model of multiple sclerosis[J]. Glia, 2022, 70(7): 1215-1250.
    [49]
    Hughes AN, Appel B. Microglia phagocytose myelin sheaths to modify developmental myelination[J]. Nat Neurosci, 2020, 23(9): 1055-1066.
    [50]
    Zhang LY, Pan JJ, Mamtilahun M, et al. Microglia exacerbate white matter injury via complement C3/C3aR pathway after hypoperfusion[J]. Theranostics, 2020, 10(1): 74-90.
    [51]
    Liu YL, Wu CF, Hou ZJ, et al. Pseudoginsenoside-F11 accelerates microglial phagocytosis of myelin debris and attenuates cerebral ischemic injury through complement receptor 3[J]. Neuroscience, 2020, 426: 33-49.
    [52]
    Zheng LL, Jia JQ, Chen Y, et al. Pentoxifylline alleviates ischemic white matter injury through up-regulating Mertk-mediated myelin clearance[J]. J Neuroinflammation, 2022, 19(1): 128.
    [53]
    Andoh M, Koyama R.Comparative review of microglia and monocytes in CNS phagocytosis[J]. Cells, 2021, 10(10): 2555.
    [54]
    Sun H, He XR, Tao X, et al. The CD200/CD200R signaling pathway contributes to spontaneous functional recovery by enhancing synaptic plasticity after stroke[J]. J Neuroinflammation, 2020, 17(1): 171.
    [55]
    Alawieh AM, Langley EF, Feng WW, et al. Complement-dependent synaptic uptake and cognitive decline after stroke and reperfusion therapy[J]. J Neurosci, 2020, 40(20): 4042-4058.
    [56]
    Shi XJ, Luo LL, Wang JX, et al. Stroke subtype-dependent synapse elimination by reactive gliosis in mice[J]. Nat Commun, 2021, 12(1): 6943.
    [57]
    Wicks EE, Ran KR, Kim JE, et al. The translational potential of microglia and monocyte-derived macrophages in ischemic stroke[J]. Front Immunol, 2022, 13: 897022.
    [58]
    Ju H, Park KW, Kim ID, et al. Phagocytosis converts infiltrated monocytes to microglia-like phenotype in experimental brain ischemia[J]. J Neuroinflammation, 2022, 19(1): 190.
    [59]
    Zhang WT, Zhao JY, Wang RR, et al. Macrophages reprogram after ischemic stroke and promote efferocytosis and inflammation resolution in the mouse brain[J]. CNS Neurosci Ther, 2019, 25(12): 1329-1342.
    [60]
    Han D, Liu H, Gao Y. The role of peripheral monocytes and macrophages in ischemic stroke[J]. Neurol Sci, 2020, 41(12): 3589-3607.
    [61]
    Ma YY, Li YN, Jiang L, et al. Macrophage depletion reduced brain injury following middle cerebral artery occlusion in mice[J]. J Neuroinflammation, 2016, 13: 38.
    [62]
    Ajmo CTJr, Vernon DO, Collier L, et al. The spleen contributes to stroke-induced neurodegeneration[J]. J Neurosci Res, 2008, 86(10): 2227-2234.
    [63]
    Ruan CS, Sun LL, Kroshilina A, et al. A novel Tmem119-tdTomato reporter mouse model for studying microglia in the central nervous system[J]. Brain Behav Immun, 2020, 83: 180-191.
    [64]
    Vankriekelsvenne E, Chrzanowski U, Manzhula K, et al. Transmembrane protein 119 is neither a specific nor a reliable marker for microglia[J]. Glia, 2022, 70(6): 1170-1190.
    [65]
    Chu XL, Cao LL, Yu ZY, et al. Hydrogen-rich saline promotes microglia M2 polarization and complement-mediated synapse loss to restore behavioral deficits following hypoxia-ischemic in neonatal mice via AMPK activation[J]. J Neuroinflammation, 2019, 16(1): 104.
    [66]
    Alawieh A, Langley EF, Tomlinson S. Targeted complement inhibition salvages stressed neurons and inhibits neuroinflammation after stroke in mice[J]. Sci Transl Med, 2018, 10(441): eaao6459.
    [67]
    Park J, Choi Y, Jung E, et al. Microglial MERTK eliminates phosphatidylserine-displaying inhibitory post-synapses[J]. EMBO J, 2021, 40(15): e107121.
    [68]
    Xue TF, Ji J, Sun YQ, et al. Sphingosine-1-phosphate, a novel TREM2 ligand, promotes microglial phagocytosis to protect against ischemic brain injury[J]. Acta Pharm Sin B, 2022, 12(4): 1885-1898.
    [69]
    Naderi Y, Panahi Y, Barreto GE, et al. Neuroprotective effects of minocycline on focal cerebral ischemia injury: a systematic review[J]. Neural Regen Res, 2020, 15(5): 773-782.
    [70]
    Wang C, Yue HM, Hu ZC, et al. Microglia mediate forgetting via complement-dependent synaptic elimination[J]. Science, 2020, 367(6478): 688-694.
    [71]
    Sellgren CM, Gracias J, Watmuff B, et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning[J]. Nat Neurosci, 2019, 22(3): 374-385.
    [72]
    Han QQ, Shen SY, Chen XR, et al.M inocycline alleviates abnormal microglial phagocytosis of synapses in a mouse model of depression[J]. Neuropharmacology, 2022, 220: 109249.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (251) PDF downloads (527) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return