Citation: | WANG Heng, SUN Hao, LIAO Hong. Reaserch progress of microglial phagocytosis in ischemic stroke[J]. Journal of China Pharmaceutical University, 2023, 54(4): 399-409. DOI: 10.11665/j.issn.1000-5048.2023022106 |
[1] |
Feigin VL, Brainin M, Norrving B, et al. World stroke organization (WSO): global stroke fact sheet 2022[J]. Int J Stroke, 2022, 17(1): 18-29.
|
[2] |
Joy MT, Carmichael ST. Encouraging an excitable brain state: mechanisms of brain repair in stroke[J]. Nat Rev Neurosci, 2021, 22(1): 38-53.
|
[3] |
Mendelson SJ, Prabhakaran S.Diagnosis and management of transient ischemic attack and acute ischemic stroke: a review[J]. JAMA, 2021, 325(11): 1088-1098.
|
[4] |
Kierdorf K, Prinz M. Microglia in steady state[J]. J Clin Invest, 2017, 127(9): 3201-3209.
|
[5] |
Borst K, Dumas AA, Prinz M.Microglia: immune and non-immune functions[J]. Immunity, 2021, 54(10): 2194-2208.
|
[6] |
Prinz M, Jung S, Priller J.Microglia biology: one century of evolving concepts[J]. Cell, 2019, 179(2): 292-311.
|
[7] |
Fu RY, Shen QY, Xu PF, et al. Phagocytosis of microglia in the central nervous system diseases[J]. Mol Neurobiol, 2014, 49(3): 1422-1434.
|
[8] |
Brown GC, Neher JJ.Microglial phagocytosis of live neurons[J]. Nat Rev Neurosci, 2014, 15(4): 209-216.
|
[9] |
Anwar S, Rivest S. Alzheimer’s disease: microglia targets and their modulation to promote amyloid phagocytosis and mitigate neuroinflammation[J]. Expert Opin Ther Targets, 2020, 24(4): 331-344.
|
[10] |
Butler CA, Popescu AS, Kitchener EJA, et al. Microglial phagocytosis of neurons in neurodegeneration, and its regulation[J]. J Neurochem, 2021, 158(3): 621-639.
|
[11] |
Puigdellívol M, Milde S, Vilalta A, et al. The microglial P2Y6 receptor mediates neuronal loss and memory deficits in neurodegeneration[J]. Cell Rep, 2021, 37(13): 110148.
|
[12] |
Sipe GO, Lowery RL, Tremblay Mè, et al. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex[J]. Nat Commun, 2016, 7: 10905.
|
[13] |
Diaz-Aparicio I, Paris I, Sierra-Torre V, et al. Microglia actively remodel adult hippocampal neurogenesis through the phagocytosis secretome[J]. J Neurosci, 2020, 40(7): 1453-1482.
|
[14] |
Ravichandran KS.Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways[J]. Immunity, 2011, 35(4): 445-455.
|
[15] |
Mecca C, Giambanco I, Donato R, et al. Microglia and aging: the role of the TREM2-DAP12 and CX3CL1-CX3CR1 axes[J]. Int J Mol Sci, 2018, 19(1): 318.
|
[16] |
Gunner G, Cheadle L, Johnson KM, et al. Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling[J]. Nat Neurosci, 2019, 22(7): 1075-1088.
|
[17] |
Paolicelli RC, Bolasco G, Pagani F, et al. Synaptic pruning by microglia is necessary for normal brain development[J]. Science, 2011, 333(6048): 1456-1458.
|
[18] |
Sapkota A, Gaire BP, Kang MG, et al. S1P2 contributes to microglial activation and M1 polarization following cerebral ischemia through ERK1/2 and JNK[J]. Sci Rep, 2019, 9(1): 12106.
|
[19] |
Leventis PA, Grinstein S. The distribution and function of phosphatidylserine in cellular membranes[J]. Annu Rev Biophys, 2010, 39: 407-427.
|
[20] |
Lemke G. How macrophages deal with death[J]. Nat Rev Immunol, 2019, 19(9): 539-549.
|
[21] |
Scott-Hewitt N, Perrucci F, Morini R, et al. Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia[J]. EMBO J, 2020, 39(16):
|
[22] |
Cockram TOJ, Dundee JM, Popescu AS, et al. The phagocytic code regulating phagocytosis of mammalian cells[J]. Front Immunol, 2021, 12: 629979.
|
[23] |
Pa?dassi H, Tacnet-Delorme P, Garlatti V, et al. C1q binds phosphatidylserine and likely acts as a multiligand-bridging molecule in apoptotic cell recognition[J]. J Immunol, 2008, 180(4): 2329-2338.
|
[24] |
Cornell J, Salinas S, Huang HY, et al. Microglia regulation of synaptic plasticity and learning and memory[J]. Neural Regen Res, 2022, 17(4): 705-716.
|
[25] |
Cong Q, Soteros BM, Huo A, et al. C1q and SRPX2 regulate microglia mediated synapse elimination during early development in the visual thalamus but not the visual cortex[J]. Glia, 2022, 70(3): 451-465.
|
[26] |
Dejanovic B, Huntley MA, De Mazière A, et al. Changes in the synaptic proteome in tauopathy and rescue of tau-induced synapse loss by C1q antibodies[J]. Neuron, 2018, 100(6): 1322-1336.e7.
|
[27] |
Hong S, Beja-Glasser VF, Nfonoyim BM, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models[J]. Science, 2016, 352(6286): 712-716.
|
[28] |
Kelley SM,Ravichandran KS. Putting the brakes on phagocytosis: “don’t-eat-me” signaling in physiology and disease[J]. EMBO Rep, 2021, 22(6):
|
[29] |
Logtenberg MEW, Scheeren FA, Schumacher TN. The CD47-SIRPα immune checkpoint[J]. Immunity, 2020, 52(5): 742-752.
|
[30] |
Lehrman EK, Wilton DK, Litvina EY, et al. CD47 protects synapses from excess microglia-mediated pruning during development[J]. Neuron, 2018, 100(1): 120-134.e6.
|
[31] |
Ding X, Wang J, Huang M, et al. Loss of microglial SIRPα promotes synaptic pruning in preclinical models of neurodegeneration[J]. Nat Commun, 2021, 12(1): 2030.
|
[32] |
Puigdellívol M, Allendorf DH, Brown GC. Sialylation and galectin-3 in microglia-mediated neuroinflammation and neurodegeneration[J]. Front Cell Neurosci, 2020, 14: 162.
|
[33] |
Pluvinage JV, Haney MS, Smith BAH, et al. CD22 blockade restores homeostatic microglial phagocytosis in ageing brains[J]. Nature, 2019, 568(7751): 187-192.
|
[34] |
Linnartz B, Kopatz J, Tenner AJ, et al. Sialic acid on the neuronal glycocalyx prevents complement C1 binding and complement receptor-3-mediated removal by microglia[J]. J Neurosci, 2012, 32(3): 946-952.
|
[35] |
Choi YH, Laaker C, Hsu M, et al. Molecular mechanisms of neuroimmune crosstalk in the pathogenesis of stroke[J]. Int J Mol Sci, 2021, 22(17): 9486.
|
[36] |
Hu XM, Leak RK, Shi YJ, et al. Microglial and macrophage polarization—new prospects for brain repair[J]. Nat Rev Neurol, 2015, 11(1): 56-64.
|
[37] |
Wen RX, Shen H, Huang SX, et al. P2Y6 receptor inhibition aggravates ischemic brain injury by reducing microglial phagocytosis[J]. CNS Neurosci Ther, 2020, 26(4): 416-429.
|
[38] |
Rudolph M, Schmeer CW, Günther M, et al. Microglia-mediated phagocytosis of apoptotic nuclei is impaired in the adult murine hippocampus after stroke[J]. Glia, 2021, 69(8): 2006-2022.
|
[39] |
Xu SB, Lu JN, Shao AW, et al. Glial cells: role of the immune response in ischemic stroke[J]. Front Immunol, 2020, 11: 294.
|
[40] |
Neher JJ, Emmrich JV, Fricker M, et al. Phagocytosis executes delayed neuronal death after focal brain ischemia[J]. Proc Natl Acad Sci U S A, 2013, 110(43): E4098-E4107.
|
[41] |
Cai W, Dai XJ, Chen J, et al. STAT6/Arg1 promotes microglia/macrophage efferocytosis and inflammation resolution in stroke mice[J]. JCI Insight, 2019, 4(20):
|
[42] |
Gy?rffy BA, Kun J, T?r?k G, et al. Local apoptotic-like mechanisms underlie complement-mediated synaptic pruning[J]. Proc Natl Acad Sci U S A, 2018, 115(24): 6303-6308.
|
[43] |
Surugiu R, Catalin B, Dumbrava D, et al. Intracortical administration of the complement C3 receptor antagonist trifluoroacetate modulates microglia reaction after brain injury[J]. Neural Plast, 2019, 2019: 1071036.
|
[44] |
Wang J, Zhang QG, Lu YJ, et al. Ganglioside GD3 is up-regulated in microglia and regulates phagocytosis following global cerebral ischemia[J]. J Neurochem, 2021, 158(3): 737-752.
|
[45] |
Qin C, Yang S, Chu YH, et al. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions[J]. Signal Transduct Target Ther, 2022, 7(1): 215.
|
[46] |
Milde S, Brown GC. Knockout of the P2Y6 receptor prevents peri-infarct neuronal loss after transient, focal ischemia in mouse brain[J]. Int J Mol Sci, 2022, 23(4): 2304.
|
[47] |
Yang J, Cao LL, Wang XP, et al. Neuronal extracellular vesicle derived miR-98 prevents salvageable neurons from microglial phagocytosis in acute ischemic stroke[J]. Cell Death Dis, 2021, 12(1): 23.
|
[48] |
Sen MK, Mahns DA, Coorssen JR, et al. The roles of microglia and astrocytes in phagocytosis and myelination: insights from the cuprizone model of multiple sclerosis[J]. Glia, 2022, 70(7): 1215-1250.
|
[49] |
Hughes AN, Appel B. Microglia phagocytose myelin sheaths to modify developmental myelination[J]. Nat Neurosci, 2020, 23(9): 1055-1066.
|
[50] |
Zhang LY, Pan JJ, Mamtilahun M, et al. Microglia exacerbate white matter injury via complement C3/C3aR pathway after hypoperfusion[J]. Theranostics, 2020, 10(1): 74-90.
|
[51] |
Liu YL, Wu CF, Hou ZJ, et al. Pseudoginsenoside-F11 accelerates microglial phagocytosis of myelin debris and attenuates cerebral ischemic injury through complement receptor 3[J]. Neuroscience, 2020, 426: 33-49.
|
[52] |
Zheng LL, Jia JQ, Chen Y, et al. Pentoxifylline alleviates ischemic white matter injury through up-regulating Mertk-mediated myelin clearance[J]. J Neuroinflammation, 2022, 19(1): 128.
|
[53] |
Andoh M, Koyama R.Comparative review of microglia and monocytes in CNS phagocytosis[J]. Cells, 2021, 10(10): 2555.
|
[54] |
Sun H, He XR, Tao X, et al. The CD200/CD200R signaling pathway contributes to spontaneous functional recovery by enhancing synaptic plasticity after stroke[J]. J Neuroinflammation, 2020, 17(1): 171.
|
[55] |
Alawieh AM, Langley EF, Feng WW, et al. Complement-dependent synaptic uptake and cognitive decline after stroke and reperfusion therapy[J]. J Neurosci, 2020, 40(20): 4042-4058.
|
[56] |
Shi XJ, Luo LL, Wang JX, et al. Stroke subtype-dependent synapse elimination by reactive gliosis in mice[J]. Nat Commun, 2021, 12(1): 6943.
|
[57] |
Wicks EE, Ran KR, Kim JE, et al. The translational potential of microglia and monocyte-derived macrophages in ischemic stroke[J]. Front Immunol, 2022, 13: 897022.
|
[58] |
Ju H, Park KW, Kim ID, et al. Phagocytosis converts infiltrated monocytes to microglia-like phenotype in experimental brain ischemia[J]. J Neuroinflammation, 2022, 19(1): 190.
|
[59] |
Zhang WT, Zhao JY, Wang RR, et al. Macrophages reprogram after ischemic stroke and promote efferocytosis and inflammation resolution in the mouse brain[J]. CNS Neurosci Ther, 2019, 25(12): 1329-1342.
|
[60] |
Han D, Liu H, Gao Y. The role of peripheral monocytes and macrophages in ischemic stroke[J]. Neurol Sci, 2020, 41(12): 3589-3607.
|
[61] |
Ma YY, Li YN, Jiang L, et al. Macrophage depletion reduced brain injury following middle cerebral artery occlusion in mice[J]. J Neuroinflammation, 2016, 13: 38.
|
[62] |
Ajmo CT
|
[63] |
Ruan CS, Sun LL, Kroshilina A, et al. A novel Tmem119-tdTomato reporter mouse model for studying microglia in the central nervous system[J]. Brain Behav Immun, 2020, 83: 180-191.
|
[64] |
Vankriekelsvenne E, Chrzanowski U, Manzhula K, et al. Transmembrane protein 119 is neither a specific nor a reliable marker for microglia[J]. Glia, 2022, 70(6): 1170-1190.
|
[65] |
Chu XL, Cao LL, Yu ZY, et al. Hydrogen-rich saline promotes microglia M2 polarization and complement-mediated synapse loss to restore behavioral deficits following hypoxia-ischemic in neonatal mice via AMPK activation[J]. J Neuroinflammation, 2019, 16(1): 104.
|
[66] |
Alawieh A, Langley EF, Tomlinson S. Targeted complement inhibition salvages stressed neurons and inhibits neuroinflammation after stroke in mice[J]. Sci Transl Med, 2018, 10(441):
|
[67] |
Park J, Choi Y, Jung E, et al. Microglial MERTK eliminates phosphatidylserine-displaying inhibitory post-synapses[J]. EMBO J, 2021, 40(15):
|
[68] |
Xue TF, Ji J, Sun YQ, et al. Sphingosine-1-phosphate, a novel TREM2 ligand, promotes microglial phagocytosis to protect against ischemic brain injury[J]. Acta Pharm Sin B, 2022, 12(4): 1885-1898.
|
[69] |
Naderi Y, Panahi Y, Barreto GE, et al. Neuroprotective effects of minocycline on focal cerebral ischemia injury: a systematic review[J]. Neural Regen Res, 2020, 15(5): 773-782.
|
[70] |
Wang C, Yue HM, Hu ZC, et al. Microglia mediate forgetting via complement-dependent synaptic elimination[J]. Science, 2020, 367(6478): 688-694.
|
[71] |
Sellgren CM, Gracias J, Watmuff B, et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning[J]. Nat Neurosci, 2019, 22(3): 374-385.
|
[72] |
Han QQ, Shen SY, Chen XR, et al.M inocycline alleviates abnormal microglial phagocytosis of synapses in a mouse model of depression[J]. Neuropharmacology, 2022, 220: 109249.
|