• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
XUE Feng, FENG Shuo, LI Jing. Application and prospect of artificial intelligence in antimicrobial peptides screening[J]. Journal of China Pharmaceutical University, 2023, 54(3): 314-322. DOI: 10.11665/j.issn.1000-5048.2023030901
Citation: XUE Feng, FENG Shuo, LI Jing. Application and prospect of artificial intelligence in antimicrobial peptides screening[J]. Journal of China Pharmaceutical University, 2023, 54(3): 314-322. DOI: 10.11665/j.issn.1000-5048.2023030901

Application and prospect of artificial intelligence in antimicrobial peptides screening

Funds: This study was supported by the National Natural Science Foundation of China (No.32170062); and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No.3322200020)
More Information
  • Received Date: March 08, 2023
  • Revised Date: June 11, 2023
  • Antimicrobial peptides (AMPs) are a class of small molecule peptides with broad-spectrum antimicrobial activity.Their unique antimicrobial mechanism can effectively treat infectious diseases, with rare drug resistance.However, though AMPs with antimicrobial activity can be screened by traditional methods, the whole process is complicated.The artificial intelligence (AI) screening method is faster and more convenient, with great potential in exploring new natural antimicrobial peptides.In this paper, strategies related to AMPs screening by AI were summarized and compared, including data sources applied to model training, artificial intelligence machine model and omics data applied to model screening of novel antimicrobial peptides.The application prospects and advantages were reviewed, in hope of providing new ideas for identification, research and development of antimicrobial peptides.
  • [1]
    Wang GS. The antimicrobial peptide database provides a platform for decoding the design principles of naturally occurring antimicrobial peptides[J]. Protein Sci, 2020, 29(1): 8-18.
    [2]
    Chaparro E, da Silva Junior PI. Lacrain: the first antimicrobial peptide from the body extract of the Brazilian centipede Scolopendra viridicornis[J]. Int J Antimicrob Agents, 2016, 48(3): 277-285.
    [3]
    Jiao K, Gao J, Zhou T, et al. Isolation and purification of a novel antimicrobial peptide from Porphyra yezoensis[J]. J Food Biochem, 2019, 43(7): e12864.
    [4]
    Wang JJ, Dou XJ, Song J, et al. Antimicrobial peptides: promising alternatives in the post feeding antibiotic era[J]. Med Res Rev, 2019, 39(3): 831-859.
    [5]
    Passarini I, Rossiter S, Malkinson J, et al. In silico structural evaluation of short cationic antimicrobial peptides[J]. Pharmaceutics, 2018, 10(3): 72.
    [6]
    Alsaggar M, Al-Hazabreh M, Al Tall Y, et al. HAZ, a novel peptide with broad-spectrum antibacterial activity[J]. Saudi Pharm J, 2022, 30(11): 1652-1658.
    [7]
    Chen N, Jiang C. Antimicrobial peptides: structure, mechanism, and modification[J]. Eur J Med Chem, 2023, 255: 115377.
    [8]
    da Costa JP, Cova M, Ferreira R, et al. Antimicrobial peptides: an alternative for innovative medicines[J]? Appl Microbiol Biotechnol, 2015, 99(5): 2023-2040.
    [9]
    Czaplewski L, Bax R, Clokie M, et al. Alternatives to antibiotics-a pipeline portfolio review[J]. Lancet Infect Dis, 2016, 16(2): 239-251.
    [10]
    Liu SC, Fan LL, Sun J, et al. Computational resources and tools for antimicrobial peptides[J]. J Pept Sci, 2017, 23(1): 4-12.
    [11]
    Chen CH, Lu TK. Development and challenges of antimicrobial peptides for therapeutic applications[J]. Antibiotics, 2020, 9(1): 24.
    [12]
    Wang GS, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education[J]. Nucleic Acids Res, 2016, 44(D1): D1087-D1093.
    [13]
    Partners CN MA. Database resources of the national genomics data center, China national center for bioinformation in 2022[J]. Nucleic Acids Res, 2022, 50(D1): D27-D38.
    [14]
    Jhong JH, Yao LT, Pang YX, et al. dbAMP 2.0: updated resource for antimicrobial peptides with an enhanced scanning method for genomic and proteomic data[J]. Nucleic Acids Res, 2022, 50(D1): D460-D470.
    [15]
    Ye GZ, Wu HY, Huang JJ, et al. LAMP2: a major update of the database linking antimicrobial peptides[J]. Database, 2020, 2020: baaa061.
    [16]
    Shi GB, Kang XY, Dong FY, et al. DRAMP 3.0: an enhanced comprehensive data repository of antimicrobial peptides[J]. Nucleic Acids Res, 2022, 50(D1): D488-D496.
    [17]
    Singh S, Chaudhary K, Dhanda SK, et al. SATPdb: a database of structurally annotated therapeutic peptides[J]. Nucleic Acids Res, 2016, 44(D1): D1119-D1126.
    [18]
    Pirtskhalava M, Amstrong AA, Grigolava M, et al. DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics[J]. Nucleic Acids Res, 2021, 49(D1): D288-D297.
    [19]
    Waghu FH, Barai RS, Gurung P, et al. CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides[J]. Nucleic Acids Res, 2016, 44(D1): D1094-D1097.
    [20]
    Seshadri Sundararajan V, Gabere MN, Pretorius A, et al. DAMPD: a manually curated antimicrobial peptide database[J]. Nucleic Acids Res, 2012, 40(Database issue): D1108-D1112.
    [21]
    Tyagi A, Tuknait A, Anand P, et al. CancerPPD: a database of anticancer peptides and proteins[J]. Nucleic Acids Res, 2015, 43(Database issue): D837-D843.
    [22]
    Gautam A, Chaudhary K, Singh S, et al. Hemolytik: a database of experimentally determined hemolytic and non-hemolytic peptides[J]. Nucleic Acids Res, 2014, 42(Database issue): D444-D449.
    [23]
    Qureshi A, Thakur N, Tandon H, et al. AVPdb: a database of experimentally validated antiviral peptides targeting medically important viruses[J]. Nucleic Acids Res, 2014, 42(Database issue): D1147-D1153.
    [24]
    Piotto SP, Sessa L, Concilio S, et al. YADAMP: yet another database of antimicrobial peptides[J]. Int J Antimicrob Agents, 2012, 39(4): 346-351.
    [25]
    Usmani SS, Kumar R, Kumar V, et al. AntiTbPdb: a knowledgebase of anti-tubercular peptides[J]. Database, 2018, 2018: bay025.
    [26]
    Usmani SS, Bedi G, Samuel JS, et al. THPdb: database of FDA-approved peptide and protein therapeutics[J]. PLoS One, 2017, 12(7): e0181748.
    [27]
    Gómez EA, Giraldo P, Orduz S. InverPep: a database of invertebrate antimicrobial peptides[J]. J Glob Antimicrob Resist, 2017, 8: 13-17.
    [28]
    Hammami R, Ben Hamida J, Vergoten G, et al. PhytAMP: a database dedicated to antimicrobial plant peptides[J]. Nucleic Acids Res, 2009, 37(Database issue): D963-D968.
    [29]
    Hammami R, Zouhir A, Ben Hamida J, et al. BACTIBASE: a new web-accessible database for bacteriocin characterization[J]. BMC Microbiol, 2007, 7: 89.
    [30]
    Di Luca M, Maccari G, Maisetta G, et al. BaAMPs: the database of biofilm-active antimicrobial peptides[J]. Biofouling, 2015, 31(2): 193-199.
    [31]
    Khabbaz H, Karimi-Jafari MH, Saboury AA, et al. Prediction of antimicrobial peptides toxicity based on their physico-chemical properties using machine learning techniques[J]. BMC Bioinformatics, 2021, 22(1): 549.
    [32]
    Kavousi K, Bagheri M, Behrouzi S, et al. IAMPE: NMR-assisted computational prediction of antimicrobial peptides[J]. J Chem Inf Model, 2020, 60(10): 4691-4701.
    [33]
    Xiao X, Wang P, Lin WZ, et al. iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types[J]. Anal Biochem, 2013, 436(2): 168-177.
    [34]
    Müller KR, Mika S, R?tsch G, et al. An introduction to kernel-based learning algorithms[J]. IEEE Trans Neural Netw, 2001, 12(2): 181-201.
    [35]
    Jaiswal M, Singh A, Kumar S. PTPAMP: prediction tool for plant-derived antimicrobial peptides[J]. Amino Acids, 2023, 55(1): 1-17.
    [36]
    Lira F, Perez PS, Baranauskas JA, et al. Prediction of antimicrobial activity of synthetic peptides by a decision tree model[J]. Appl Environ Microbiol, 2013, 79(10): 3156-3159.
    [37]
    Lv HW, Yan K, Guo YC, et al. AMPpred-EL: an effective antimicrobial peptide prediction model based on ensemble learning[J]. Comput Biol Med, 2022, 146: 105577.
    [38]
    Exarchos KP, Exarchos TP, Papaloukas C, et al. Predicting peptide bond conformation using feature selection and the Na?ve Bayes approach[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2007, 2007: 5009-5012.
    [39]
    Chen W, Luo LF. Classification of antimicrobial peptide using diversity measure with quadratic discriminant analysis[J]. J Microbiol Methods, 2009, 78(1): 94-96.
    [40]
    Fjell CD, Hancock RE, Cherkasov A. AMPer: a database and an automated discovery tool for antimicrobial peptides[J]. Bioinformatics, 2007, 23(9): 1148-1155.
    [41]
    de Jong A, van Heel AJ, Kok J, et al. BAGEL2: mining for bacteriocins in genomic data[J]. Nucleic Acids Res, 2010, 38(Web Server issue): W647-W651.
    [42]
    Polanco C, Samaniego JL. Detection of selective cationic amphipatic antibacterial peptides by Hidden Markov models[J]. Acta Biochim Pol, 2009, 56(1): 167-176.
    [43]
    Guo YC, Yan K, Lv HW, et al. PreTP-EL: prediction of therapeutic peptides based on ensemble learning[J]. Brief Bioinform, 2021, 22(6): bbab358.
    [44]
    Bhadra P, Yan JL, Li JY, et al. AmPEP: sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest[J]. Sci Rep, 2018, 8(1): 1697.
    [45]
    Jan A, Hayat M, Wedyan M, et al. Target-AMP: computational prediction of antimicrobial peptides by coupling sequential information with evolutionary profile[J]. Comput Biol Med, 2022, 151(Pt A): 106311.
    [46]
    Lata S, Mishra NK, Raghava GP. AntiBP2: improved version of antibacterial peptide prediction[J]. BMC Bioinformatics, 2010, 11(Suppl 1): S19.
    [47]
    Porto WF, Pires áS, Franco OL. CS-AMPPred: an updated SVM model for antimicrobial activity prediction in cysteine-stabilized peptides[J]. PLoS One, 2012, 7(12): e51444.
    [48]
    Niarchou A, Alexandridou A, Athanasiadis E, et al. C-PAmP: large scale analysis and database construction containing high scoring computationally predicted antimicrobial peptides for all the available plant species[J]. PLoS One, 2013, 8(11): e79728.
    [49]
    Rajkumar M, Bhukya SN, Ahalya N, et al. Impact of ANN in revealing of viral peptides[J]. Biomed Res Int, 2022, 2022: 7760734.
    [50]
    Zhang HP, Saravanan KM, Wei YJ, et al. Deep learning-based bioactive therapeutic peptide generation and screening[J]. J Chem Inf Model, 2023, 63(3): 835-845.
    [51]
    Wang HQ, Zhao J, Zhao H, et al. CL-ACP: a parallel combination of CNN and LSTM anticancer peptide recognition model[J]. BMC Bioinformatics, 2021, 22(1): 512.
    [52]
    Xiao X, Shao YT, Cheng X, et al. iAMP-CA2L: a new CNN-BiLSTM-SVM classifier based on cellular automata image for identifying antimicrobial peptides and their functional types[J]. Brief Bioinform, 2021, 22(6): bbab209.
    [53]
    Ma Y, Guo ZY, Xia BB, et al. Identification of antimicrobial peptides from the human gut microbiome using deep learning[J]. Nat Biotechnol, 2022, 40(6): 921-931.
    [54]
    Wang C, Garlick S, Zloh M. Deep learning for novel antimicrobial peptide design[J]. Biomolecules, 2021, 11(3): 471.
    [55]
    Dong B, Yi YH, Liang LF, et al. High throughput identification of antimicrobial peptides from fish gastrointestinal microbiota[J]. Toxins, 2017, 9(9): 266.
    [56]
    Fingerhut LCHW, Miller DJ, Strugnell JM, et al. Ampir: an R package for fast genome-wide prediction of antimicrobial peptides[J]. Bioinformatics, 2021, 36(21): 5262-5263.
    [57]
    Sharma R, Shrivastava S, Kumar Singh S, et al. AniAMPpred: artificial intelligence guided discovery of novel antimicrobial peptides in animal kingdom[J]. Brief Bioinform, 2021, 22(6): bbab242.
    [58]
    Lee JH, Chung H, Shin YP, et al. Deciphering novel antimicrobial peptides from the transcriptome of Papilio xuthus[J]. Insects, 2020, 11(11): 776.
    [59]
    Shelenkov AA, Slavokhotova AA, Odintsova TI. Cysmotif searcher pipeline for antimicrobial peptide identification in plant transcriptomes[J]. Biochemistry, 2018, 83(11): 1424-1432.
    [60]
    Grafskaia EN, Polina NF, Babenko VV, et al. Discovery of novel antimicrobial peptides: a transcriptomic study of the sea Anemone Cnidopus japonicus[J]. J Bioinform Comput Biol, 2018, 16(2): 1840006.
    [61]
    Li RH, Huang Y, Peng C, et al. High-throughput prediction and characterization of antimicrobial peptides from multi-omics datasets of Chinese tubular cone snail (Conus betulinus)[J]. Front Mar Sci, 2022, 9: 1092731.
    [62]
    Ebou A, Koua D, Addablah A, et al. Combined proteotranscriptomic-based strategy to discover novel antimicrobial peptides from cone snails[J]. Biomedicines, 2021, 9(4): 344.
  • Cited by

    Periodical cited type(1)

    1. 刘敏,黄湘宇,吴昊,文李,程云辉,陈茂龙. 植物源抗菌肽的筛选及其在食品中的应用进展. 食品与机械. 2024(07): 200-207+215 .

    Other cited types(0)

Catalog

    Article views (829) PDF downloads (368) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return