Citation: | XUE Feng, FENG Shuo, LI Jing. Application and prospect of artificial intelligence in antimicrobial peptides screening[J]. Journal of China Pharmaceutical University, 2023, 54(3): 314-322. DOI: 10.11665/j.issn.1000-5048.2023030901 |
[1] |
Wang GS. The antimicrobial peptide database provides a platform for decoding the design principles of naturally occurring antimicrobial peptides[J]. Protein Sci, 2020, 29(1): 8-18.
|
[2] |
Chaparro E, da Silva Junior PI. Lacrain: the first antimicrobial peptide from the body extract of the Brazilian centipede Scolopendra viridicornis[J]. Int J Antimicrob Agents, 2016, 48(3): 277-285.
|
[3] |
Jiao K, Gao J, Zhou T, et al. Isolation and purification of a novel antimicrobial peptide from Porphyra yezoensis[J]. J Food Biochem, 2019, 43(7):
|
[4] |
Wang JJ, Dou XJ, Song J, et al. Antimicrobial peptides: promising alternatives in the post feeding antibiotic era[J]. Med Res Rev, 2019, 39(3): 831-859.
|
[5] |
Passarini I, Rossiter S, Malkinson J, et al. In silico structural evaluation of short cationic antimicrobial peptides[J]. Pharmaceutics, 2018, 10(3): 72.
|
[6] |
Alsaggar M, Al-Hazabreh M, Al Tall Y, et al. HAZ, a novel peptide with broad-spectrum antibacterial activity[J]. Saudi Pharm J, 2022, 30(11): 1652-1658.
|
[7] |
Chen N, Jiang C. Antimicrobial peptides: structure, mechanism, and modification[J]. Eur J Med Chem, 2023, 255: 115377.
|
[8] |
da Costa JP, Cova M, Ferreira R, et al. Antimicrobial peptides: an alternative for innovative medicines[J]? Appl Microbiol Biotechnol, 2015, 99(5): 2023-2040.
|
[9] |
Czaplewski L, Bax R, Clokie M, et al. Alternatives to antibiotics-a pipeline portfolio review[J]. Lancet Infect Dis, 2016, 16(2): 239-251.
|
[10] |
Liu SC, Fan LL, Sun J, et al. Computational resources and tools for antimicrobial peptides[J]. J Pept Sci, 2017, 23(1): 4-12.
|
[11] |
Chen CH, Lu TK. Development and challenges of antimicrobial peptides for therapeutic applications[J]. Antibiotics, 2020, 9(1): 24.
|
[12] |
Wang GS, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education[J]. Nucleic Acids Res, 2016, 44(D1): D1087-D1093.
|
[13] |
Partners CN MA. Database resources of the national genomics data center, China national center for bioinformation in 2022[J]. Nucleic Acids Res, 2022, 50(D1): D27-D38.
|
[14] |
Jhong JH, Yao LT, Pang YX, et al. dbAMP 2.0: updated resource for antimicrobial peptides with an enhanced scanning method for genomic and proteomic data[J]. Nucleic Acids Res, 2022, 50(D1): D460-D470.
|
[15] |
Ye GZ, Wu HY, Huang JJ, et al. LAMP2: a major update of the database linking antimicrobial peptides[J]. Database, 2020, 2020:
|
[16] |
Shi GB, Kang XY, Dong FY, et al. DRAMP 3.0: an enhanced comprehensive data repository of antimicrobial peptides[J]. Nucleic Acids Res, 2022, 50(D1): D488-D496.
|
[17] |
Singh S, Chaudhary K, Dhanda SK, et al. SATPdb: a database of structurally annotated therapeutic peptides[J]. Nucleic Acids Res, 2016, 44(D1): D1119-D1126.
|
[18] |
Pirtskhalava M, Amstrong AA, Grigolava M, et al. DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics[J]. Nucleic Acids Res, 2021, 49(D1): D288-D297.
|
[19] |
Waghu FH, Barai RS, Gurung P, et al. CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides[J]. Nucleic Acids Res, 2016, 44(D1): D1094-D1097.
|
[20] |
Seshadri Sundararajan V, Gabere MN, Pretorius A, et al. DAMPD: a manually curated antimicrobial peptide database[J]. Nucleic Acids Res, 2012, 40(Database issue): D1108-D1112.
|
[21] |
Tyagi A, Tuknait A, Anand P, et al. CancerPPD: a database of anticancer peptides and proteins[J]. Nucleic Acids Res, 2015, 43(Database issue): D837-D843.
|
[22] |
Gautam A, Chaudhary K, Singh S, et al. Hemolytik: a database of experimentally determined hemolytic and non-hemolytic peptides[J]. Nucleic Acids Res, 2014, 42(Database issue): D444-D449.
|
[23] |
Qureshi A, Thakur N, Tandon H, et al. AVPdb: a database of experimentally validated antiviral peptides targeting medically important viruses[J]. Nucleic Acids Res, 2014, 42(Database issue): D1147-D1153.
|
[24] |
Piotto SP, Sessa L, Concilio S, et al. YADAMP: yet another database of antimicrobial peptides[J]. Int J Antimicrob Agents, 2012, 39(4): 346-351.
|
[25] |
Usmani SS, Kumar R, Kumar V, et al. AntiTbPdb: a knowledgebase of anti-tubercular peptides[J]. Database, 2018, 2018:
|
[26] |
Usmani SS, Bedi G, Samuel JS, et al. THPdb: database of FDA-approved peptide and protein therapeutics[J]. PLoS One, 2017, 12(7):
|
[27] |
Gómez EA, Giraldo P, Orduz S. InverPep: a database of invertebrate antimicrobial peptides[J]. J Glob Antimicrob Resist, 2017, 8: 13-17.
|
[28] |
Hammami R, Ben Hamida J, Vergoten G, et al. PhytAMP: a database dedicated to antimicrobial plant peptides[J]. Nucleic Acids Res, 2009, 37(Database issue): D963-D968.
|
[29] |
Hammami R, Zouhir A, Ben Hamida J, et al. BACTIBASE: a new web-accessible database for bacteriocin characterization[J]. BMC Microbiol, 2007, 7: 89.
|
[30] |
Di Luca M, Maccari G, Maisetta G, et al. BaAMPs: the database of biofilm-active antimicrobial peptides[J]. Biofouling, 2015, 31(2): 193-199.
|
[31] |
Khabbaz H, Karimi-Jafari MH, Saboury AA, et al. Prediction of antimicrobial peptides toxicity based on their physico-chemical properties using machine learning techniques[J]. BMC Bioinformatics, 2021, 22(1): 549.
|
[32] |
Kavousi K, Bagheri M, Behrouzi S, et al. IAMPE: NMR-assisted computational prediction of antimicrobial peptides[J]. J Chem Inf Model, 2020, 60(10): 4691-4701.
|
[33] |
Xiao X, Wang P, Lin WZ, et al. iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types[J]. Anal Biochem, 2013, 436(2): 168-177.
|
[34] |
Müller KR, Mika S, R?tsch G, et al. An introduction to kernel-based learning algorithms[J]. IEEE Trans Neural Netw, 2001, 12(2): 181-201.
|
[35] |
Jaiswal M, Singh A, Kumar S. PTPAMP: prediction tool for plant-derived antimicrobial peptides[J]. Amino Acids, 2023, 55(1): 1-17.
|
[36] |
Lira F, Perez PS, Baranauskas JA, et al. Prediction of antimicrobial activity of synthetic peptides by a decision tree model[J]. Appl Environ Microbiol, 2013, 79(10): 3156-3159.
|
[37] |
Lv HW, Yan K, Guo YC, et al. AMPpred-EL: an effective antimicrobial peptide prediction model based on ensemble learning[J]. Comput Biol Med, 2022, 146: 105577.
|
[38] |
Exarchos KP, Exarchos TP, Papaloukas C, et al. Predicting peptide bond conformation using feature selection and the Na?ve Bayes approach[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2007, 2007: 5009-5012.
|
[39] |
Chen W, Luo LF. Classification of antimicrobial peptide using diversity measure with quadratic discriminant analysis[J]. J Microbiol Methods, 2009, 78(1): 94-96.
|
[40] |
Fjell CD, Hancock RE, Cherkasov A. AMPer: a database and an automated discovery tool for antimicrobial peptides[J]. Bioinformatics, 2007, 23(9): 1148-1155.
|
[41] |
de Jong A, van Heel AJ, Kok J, et al. BAGEL2: mining for bacteriocins in genomic data[J]. Nucleic Acids Res, 2010, 38(Web Server issue): W647-W651.
|
[42] |
Polanco C, Samaniego JL. Detection of selective cationic amphipatic antibacterial peptides by Hidden Markov models[J]. Acta Biochim Pol, 2009, 56(1): 167-176.
|
[43] |
Guo YC, Yan K, Lv HW, et al. PreTP-EL: prediction of therapeutic peptides based on ensemble learning[J]. Brief Bioinform, 2021, 22(6):
|
[44] |
Bhadra P, Yan JL, Li JY, et al. AmPEP: sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest[J]. Sci Rep, 2018, 8(1): 1697.
|
[45] |
Jan A, Hayat M, Wedyan M, et al. Target-AMP: computational prediction of antimicrobial peptides by coupling sequential information with evolutionary profile[J]. Comput Biol Med, 2022, 151(
|
[46] |
Lata S, Mishra NK, Raghava GP. AntiBP2: improved version of antibacterial peptide prediction[J]. BMC Bioinformatics, 2010, 11(
|
[47] |
Porto WF, Pires áS, Franco OL. CS-AMPPred: an updated SVM model for antimicrobial activity prediction in cysteine-stabilized peptides[J]. PLoS One, 2012, 7(12):
|
[48] |
Niarchou A, Alexandridou A, Athanasiadis E, et al. C-PAmP: large scale analysis and database construction containing high scoring computationally predicted antimicrobial peptides for all the available plant species[J]. PLoS One, 2013, 8(11):
|
[49] |
Rajkumar M, Bhukya SN, Ahalya N, et al. Impact of ANN in revealing of viral peptides[J]. Biomed Res Int, 2022, 2022: 7760734.
|
[50] |
Zhang HP, Saravanan KM, Wei YJ, et al. Deep learning-based bioactive therapeutic peptide generation and screening[J]. J Chem Inf Model, 2023, 63(3): 835-845.
|
[51] |
Wang HQ, Zhao J, Zhao H, et al. CL-ACP: a parallel combination of CNN and LSTM anticancer peptide recognition model[J]. BMC Bioinformatics, 2021, 22(1): 512.
|
[52] |
Xiao X, Shao YT, Cheng X, et al. iAMP-CA2L: a new CNN-BiLSTM-SVM classifier based on cellular automata image for identifying antimicrobial peptides and their functional types[J]. Brief Bioinform, 2021, 22(6):
|
[53] |
Ma Y, Guo ZY, Xia BB, et al. Identification of antimicrobial peptides from the human gut microbiome using deep learning[J]. Nat Biotechnol, 2022, 40(6): 921-931.
|
[54] |
Wang C, Garlick S, Zloh M. Deep learning for novel antimicrobial peptide design[J]. Biomolecules, 2021, 11(3): 471.
|
[55] |
Dong B, Yi YH, Liang LF, et al. High throughput identification of antimicrobial peptides from fish gastrointestinal microbiota[J]. Toxins, 2017, 9(9): 266.
|
[56] |
Fingerhut LCHW, Miller DJ, Strugnell JM, et al. Ampir: an R package for fast genome-wide prediction of antimicrobial peptides[J]. Bioinformatics, 2021, 36(21): 5262-5263.
|
[57] |
Sharma R, Shrivastava S, Kumar Singh S, et al. AniAMPpred: artificial intelligence guided discovery of novel antimicrobial peptides in animal kingdom[J]. Brief Bioinform, 2021, 22(6):
|
[58] |
Lee JH, Chung H, Shin YP, et al. Deciphering novel antimicrobial peptides from the transcriptome of Papilio xuthus[J]. Insects, 2020, 11(11): 776.
|
[59] |
Shelenkov AA, Slavokhotova AA, Odintsova TI. Cysmotif searcher pipeline for antimicrobial peptide identification in plant transcriptomes[J]. Biochemistry, 2018, 83(11): 1424-1432.
|
[60] |
Grafskaia EN, Polina NF, Babenko VV, et al. Discovery of novel antimicrobial peptides: a transcriptomic study of the sea Anemone Cnidopus japonicus[J]. J Bioinform Comput Biol, 2018, 16(2): 1840006.
|
[61] |
Li RH, Huang Y, Peng C, et al. High-throughput prediction and characterization of antimicrobial peptides from multi-omics datasets of Chinese tubular cone snail (Conus betulinus)[J]. Front Mar Sci, 2022, 9: 1092731.
|
[62] |
Ebou A, Koua D, Addablah A, et al. Combined proteotranscriptomic-based strategy to discover novel antimicrobial peptides from cone snails[J]. Biomedicines, 2021, 9(4): 344.
|
1. |
刘敏,黄湘宇,吴昊,文李,程云辉,陈茂龙. 植物源抗菌肽的筛选及其在食品中的应用进展. 食品与机械. 2024(07): 200-207+215 .
![]() |