Citation: | CHEN Peipei, WEI Jie, LIU Xiaoquan, LIU Haochen. Dihydroergotamine ameliorates synaptic atrophy in Alzheimer’s disease states and its effect on cognitive function[J]. Journal of China Pharmaceutical University, 2023, 54(4): 501-510. DOI: 10.11665/j.issn.1000-5048.2023032002 |
[1] |
. Front Aging Neurosci, 2022, 14: 9374-9386.
|
[2] |
Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease [J]. Lancet, 2021, 397(10284): 1577-1590.
|
[3] |
John A, Reddy PH. Synaptic basis of Alzheimer’s disease: focus on synaptic amyloid beta, P-tau and mitochondria[J]. Ageing Res Rev, 2021, 65: 101208.
|
[4] |
Nishino H, Saito T, Wei R, et al. The LMTK1-TBC1D9B-Rab11A cascade regulates dendritic spine formation via endosome trafficking[J]. J Neurosci, 2019, 39(48): 9491-9502.
|
[5] |
Takano T, Urushibara T, Yoshioka N, et al. LMTK1 regulates dendritic formation by regulating movement of Rab11A-positive endosomes[J]. Mol Biol Cell, 2014, 25(11): 1755-1768.
|
[6] |
Wang Y, Aun R, Tse FL.Brain uptake of dihydroergotamine after intravenous and nasal administration in the rat[J].Biopharm Drug Dispos, 1998, 19(9): 571-575.
|
[7] |
Hollister LE, Yesavage J. Ergoloid mesylates for senile dementias: unanswered questions[J]. Ann Intern Med, 1984, 100(6): 894-898.
|
[8] |
Kemali M, Kemali D. Lysergic acid diethylamide: morphological study of its effect on synapses[J]. Psychopharmacology, 1980, 69(3): 315-317.
|
[9] |
Rivera-Mancilla E, Avilés-Rosas VH, Manrique-Maldonado G, et al. The role of α1- and α2-adrenoceptor subtypes in the vasopressor responses induced by dihydroergotamine in ritanserin-pretreated pithed rats[J]. J Headache Pain, 2017, 18(1): 104.
|
[10] |
Silberstein SD, Shrewsbury SB, Hoekman J. Dihydroergotamine (DHE) — then and now: a narrative review[J]. Headache, 2020, 60(1): 40-57.
|
[11] |
Boudreaux SP, Duren RP, Call SG, et al.Drug targeting of NR4A nuclear receptors for treatment of acute myeloid leukemia[J]. Leukemia, 2019, 33(1): 52-63.
|
[12] |
Zhao HM, Wei J, Du YN, et al.Improved cognitive impairments by silencing DMP1 via enhancing the proliferation of neural progenitor cell in Alzheimer-like mice[J]. Aging Cell, 2022, 21(5):
|
[13] |
Zeng ML, Shang Y, Araki Y, et al. Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity[J]. Cell, 2016, 166(5): 1163-1175.
|
[14] |
Meyer D, Bonhoeffer T, Scheuss V. Balance and stability of synaptic structures during synaptic plasticity[J]. Neuron, 2014, 82(2): 430-443.
|
[15] |
Magee JC, Grienberger C. Synaptic plasticity forms and functions[J]. Annu Rev Neurosci, 2020, 43: 95-117.
|
[16] |
Pickett EK, Rose J, McCrory C, et al. Region-specific depletion of synaptic mitochondria in the brains of patients with Alzheimer’s disease[J].Acta Neuropathol, 2018, 136(5): 747-757.
|
[17] |
Zhou Y, Song ZY, Han X, et al.Prediction of Alzheimer’s disease progression based on magnetic resonance imaging[J]. ACS Chem Neurosci, 2021, 12(22): 4209-4223.
|
[18] |
Griciuc A, Federico AN, Natasan J, et al. Gene therapy for Alzheimer’s disease targeting CD33 reduces amyloid beta accumulation and neuroinflammation[J]. Hum Mol Genet, 2020, 29(17): 2920-2935.
|
[19] |
Colom-Cadena M, Spires-Jones T, Zetterberg H, et al. The clinical promise of biomarkers of synapse damage or loss in Alzheimer’s disease[J]. Alzheimers Res Ther, 2020, 12(1): 21.
|
[20] |
Grimmig B, Hudson C, Moss L, et al. Astaxanthin supplementation modulates cognitive function and synaptic plasticity in young and aged mice[J]. GeroScience, 2019, 41(1): 77-87.
|
[21] |
Naslavsky N, Caplan S. The enigmatic endosome-sorting the ins and outs of endocytic trafficking[J]. J Cell Sci, 2018, 131(13):
|
[22] |
Lai SM, Ng KY, Koh RY, et al. Endosomal-lysosomal dysfunctions in Alzheimer’s disease: pathogenesis and therapeutic interventions[J]. Metab Brain Dis, 2021, 36(6): 1087-1100.
|
[23] |
Sultana P, Novotny J. Rab11 and its role in neurodegenerative diseases[J]. ASN Neuro, 2022, 14: 17590914221142360.
|
1. |
穆峣,赵慧敏,刘昊晨,柳晓泉. 阿尔茨海默病药物研发最新进展. 中国药科大学学报. 2024(06): 816-825 .
![]() |