Citation: | ZHU Lijuan, YANG Jie, WEN Xiaodong, ZHOU Ke. Progress of experimental research on prevention and treatment of diabetic kidney disease by traditional Chinese medicine[J]. Journal of China Pharmaceutical University, 2023, 54(5): 644-652. DOI: 10.11665/j.issn.1000-5048.2023032901 |
[1] |
Stephens JW, Brown KE, Min T. Chronic kidney disease in type 2 diabetes: implications for managing glycaemic control, cardiovascular and renal risk[J]. Diabetes Obes Metab, 2020, 22(
|
[2] |
Xu CB, Xiang SW. Research progress in prevention and treatment of diabetic nephropathy based on pathogenesis of qi deficiency and blood stasis[J]. J Pract Tradit Chin Intern Med (实用中医内科杂志), 2023, 37(4): 77-79.
|
[3] |
Zhou Y, Liu JT, Yang YF, et al. Analysis of pathogenesis and treatment of diabetic nephropathy from the theory of “deficiency, phlegm, blood stasis and toxin”[J]. J Liaoning Univ Tradit Chin Med (辽宁中医药大学学报), 2022, 24(12): 78-81.
|
[4] |
Su KL, Zhu Y, Guo LZ. Study on clinical experience of Chinese medicine great master ZHOU Zhong-ying in treating diabetic nephropathy(DN)[J]. China J Tradit Chin Med Pharm (中华中医药杂志), 2012, 27(11): 2854-2857.
|
[5] |
Zhao Y, Zhang LZ, Fan WW, et al. Chinese doctor ZHANG Da-ning''s experience in treating diabetic nephropathy[J]. Shaanxi J Tradit Chin Med (陕西中医), 2021, 42(06): 773-775, 788.
|
[6] |
Hu HJ, Zhou Y, Liang LW, et al. CHEN boping’s experience of treatment to diabetic nephropathy[J]. J Tradit Chin Med Lit (中医文献杂志), 2019, 37(4): 38-40.
|
[7] |
Tuttle KR, Agarwal R, Alpers CE, et al. Molecular mechanisms and therapeutic targets for diabetic kidney disease[J]. Kidney Int, 2022, 102(2): 248-260.
|
[8] |
Magee C, Grieve DJ, Watson CJ, et al. Diabetic nephropathy: a tangled web to unweave[J]. Cardiovasc Drugs Ther, 2017, 31(5/6): 579-592.
|
[9] |
Alicic RZ, Neumiller JJ, Johnson EJ, et al. Sodium-glucose cotransporter 2 inhibition and diabetic kidney disease[J]. Diabetes, 2019, 68(2): 248-257.
|
[10] |
Sanajou D, Ghorbani Haghjo A, Argani H, et al. AGE-RAGE axis blockade in diabetic nephropathy: current status and future directions[J]. Eur J Pharmacol, 2018, 833: 158-164.
|
[11] |
Jadoon A, Mathew AV, Byun J, et al. Gut microbial product predicts cardiovascular risk in chronic kidney disease patients[J]. Am J Nephrol, 2018, 48(4): 269-277.
|
[12] |
Salem RM, Todd JN, Sandholm N, et al. Genome-wide association study of diabetic kidney disease highlights biology involved in glomerular basement membrane collagen[J]. J Am Soc Nephrol, 2019, 30(10): 2000-2016.
|
[13] |
Naaman S, Bakris G. Slowing diabetic kidney disease progression: where do we stand today[J]? Compendia, 2021, 2021(1): 28-32.
|
[14] |
Chen X, Wu R, Kong YW, et al. Tanshinone IIA attenuates renal damage in STZ-induced diabetic rats via inhibiting oxidative stress and inflammation[J]. Oncotarget, 2017, 8(19): 31915-31922.
|
[15] |
Xu SJ, He LJ, Ding KK, et al. Tanshinone IIA ameliorates streptozotocin-induced diabetic nephropathy, partly by attenuating PERK pathway-induced fibrosis[J]. Drug Des Devel Ther, 2020, 14: 5773-5782.
|
[16] |
Liu JL, Zhang YM, Sheng HQ, et al. Hyperoside suppresses renal inflammation by regulating macrophage polarization in mice with type 2 diabetes mellitus[J]. Front Immunol, 2021, 12: 733808.
|
[17] |
Liu YQ, Li Y, Xu L, et al. Quercetin attenuates podocyte apoptosis of diabetic nephropathy through targeting EGFR signaling[J]. Front Pharmacol, 2021, 12: 792777.
|
[18] |
Sheng HQ, Zhang D, Zhang JQ, et al. Kaempferol attenuated diabetic nephropathy by reducing apoptosis and promoting autophagy through AMPK/mTOR pathways[J]. Front Med, 2022, 9: 986825.
|
[19] |
Sharma D, Gondaliya P, Tiwari V, et al. Kaempferol attenuates diabetic nephropathy by inhibiting RhoA/Rho-kinase mediated inflammatory signalling[J]. Biomedecine Pharmacother, 2019, 109: 1610-1619.
|
[20] |
Alshehri AS. Kaempferol attenuates diabetic nephropathy in streptozotocin-induced diabetic rats by a hypoglycaemic effect and concomitant activation of the Nrf-2/Ho-1/antioxidants axis[J]. Arch Physiol Biochem, 2023, 129(4): 984-997.
|
[21] |
Qi MY, He YH, Cheng Y, et al. Icariin ameliorates streptozocin-induced diabetic nephropathy through suppressing the TLR4/NF-κB signal pathway[J]. Food Funct, 2021, 12(3): 1241-1251.
|
[22] |
Ding XS, Zhao HZ, Qiao C. Icariin protects podocytes from NLRP3 activation by Sesn2-induced mitophagy through the Keap1-Nrf2/HO-1 axis in diabetic nephropathy[J]. Phytomedicine, 2022, 99: 154005.
|
[23] |
Liu Y, Ye J, Cao YH, et al. Silibinin ameliorates diabetic nephropathy via improving diabetic condition in the mice[J]. Eur J Pharmacol, 2019, 845: 24-31.
|
[24] |
Zhu LP, Han JK, Yuan RR, et al. Berberine ameliorates diabetic nephropathy by inhibiting TLR4/NF-κB pathway[J]. Biol Res, 2018, 51(1): 9.
|
[25] |
Ni WJ, Guan XM, Zeng J, et al. Berberine regulates mesangial cell proliferation and cell cycle to attenuate diabetic nephropathy through the PI3K/Akt/AS160/GLUT1 signalling pathway[J]. J Cell Mol Med, 2022, 26(4): 1144-1155.
|
[26] |
Zhai JJ, Li ZP, Zhang HF, et al. Coptisine ameliorates renal injury in diabetic rats through the activation of Nrf2 signaling pathway[J]. Naunyn Schmiedebergs Arch Pharmacol, 2020, 393(1): 57-65.
|
[27] |
Rai U, Kosuru R, Prakash S, et al. Tetramethylpyrazine alleviates diabetic nephropathy through the activation of Akt signalling pathway in rats[J]. Eur J Pharmacol, 2019, 865: 172763.
|
[28] |
Chen JG, Pang Q, Zeng W, et al. Therapeutic effect of betaine on diabetic nephropathy in db/db mice[J]. J Third Mil Med Univ (第三军医大学学报), 2012, 34(11): 1040-1043.
|
[29] |
Zhu ML, Wang HY, Chen JW, et al. Sinomenine improve diabetic nephropathy by inhibiting fibrosis and regulating the JAK2/STAT3/SOCS1 pathway in streptozotocin-induced diabetic rats[J]. Life Sci, 2021, 265: 118855.
|
[30] |
Liu YW, Hao YC, Chen YJ, et al. Protective effects of sarsasapogenin against early stage of diabetic nephropathy in rats[J]. Phytother Res, 2019, 33(9): 2470.
|
[31] |
Li XZ, Jiang H, Xu L, et al. Sarsasapogenin restores podocyte autophagy in diabetic nephropathy by targeting GSK3β signaling pathway[J]. Biochem Pharmacol, 2021, 192: 114675.
|
[32] |
Tang ZZ, Zhang YM, Zheng T, et al. Sarsasapogenin alleviates diabetic nephropathy through suppression of chronic inflammation by down-regulating PAR-1: in vivo and in vitro study[J]. Phytomedicine, 2020, 78: 153314.
|
[33] |
Wu H, Fu LZ, Zhao Y, et al. Platycodin D improves renal injury in diabetic nephropathy model rats by regulating oxidative stress mediated PI3K/Akt/mTOR signaling pathway[J]. Chin J Pharmacol Toxicol (中国药理学与毒理学杂志), 2022, 36(3): 170-176.
|
[34] |
Zhong YJ, Luo RL, Liu Q, et al. Jujuboside A ameliorates high fat diet and streptozotocin induced diabetic nephropathy via suppressing oxidative stress, apoptosis, and enhancing autophagy[J]. Food Chem Toxicol, 2022, 159: 112697.
|
[35] |
Yang F, Liu CN. Study on protective effect of PPD-25-OH on renal function in rats with diabetic nephropathy[J]. Chongqing Med (重庆医学), 2022, 51(6): 916-919, 923.
|
[36] |
Su J, Gao CT, Xie L, et al. Astragaloside II ameliorated podocyte injury and mitochondrial dysfunction in streptozotocin-induced diabetic rats[J]. Front Pharmacol, 2021, 12: 638422.
|
[37] |
Peng J. Protective effect of Polygonatum saponin on renal injury in diabetic nephropathy rats and the effect of Wnt/β-catenin signaling pathway[J]. Chin Tradit Pat Med (中成药), 2019, 41(10): 2518-2521.
|
[38] |
Zhao QH, Li JJ, Yan J, et al. Lycium barbarum polysaccharides ameliorates renal injury and inflammatory reaction in alloxan-induced diabetic nephropathy rabbits[J]. Life Sci, 2016, 157: 82-90.
|
[39] |
Meng X, Wei MM, Wang D, et al. Astragalus polysaccharides protect renal function and affect the TGF-
|
[40] |
Ma J, Rui HB, Chen QZ, et al. Study on anti-inflammatory and therapeutic properties of Ganoderma lucidum polysaccharides on diabetic nephropathy in streptozotocin-induced mice[J]. J Nanjing Med Univ Nat Sci (南京医科大学学报 自然科学版), 2019, 39(3): 326-331, 337.
|
[41] |
Hu Y, Wang SX, Wu FY, et al. Effects and mechanism of Ganoderma lucidum polysaccharides in the treatment of diabetic nephropathy in streptozotocin-induced diabetic rats[J]. Biomed Res Int, 2022, 2022: 4314415.
|
[42] |
Bai Y, Yang LX, He Y, et al. Effect of angelica polysaccharide on diabetic nephropathy rats through TLR4/NF-κB signaling pathway[J]. Chin Tradit Pat Med (中成药), 2021, 43(3): 755-760.
|
[43] |
Feng YC, Weng HB, Ling LJ, et al. Modulating the gut microbiota and inflammation is involved in the effect of Bupleurum polysaccharides against diabetic nephropathy in mice[J]. Int J Biol Macromol, 2019, 132: 1001-1011.
|
[44] |
Liao ZZ, Zhang JY, Wang JY, et al. The anti-nephritic activity of a polysaccharide from okra (Abelmoschus esculentus (L.) Moench) via modulation of AMPK-Sirt1-PGC-1α signaling axis mediated anti-oxidative in type 2 diabetes model mice[J]. Int J Biol Macromol, 2019, 140: 568-576.
|
[45] |
Zhang WJ, Lai XH, Chen JW. Effect of yam polysaccharides in the treatment of obese diabetic nephropathy rats and its effect on renal function and intestinal microecology[J]. Chin J Microecol (中国微生态学杂志), 2021, 33(1): 37-42.
|
[46] |
Qiao J, Zhao Y, Chen X, et al. Effect of Rhein on renal injury in type 2 diabetic rats based on PI3K/Akt/FoxO1 pathway[J]. Chin Tradit Pat Med (中成药), 2023, 45(2): 609-613.
|
[47] |
Cai TT, Ye XL, Li RR, et al. Resveratrol modulates the gut microbiota and inflammation to protect against diabetic nephropathy in mice[J]. Front Pharmacol, 2020, 11: 1249.
|
[48] |
Zhao YH, Fan YJ. Resveratrol improves lipid metabolism in diabetic nephropathy rats[J]. Front Biosci (Landmark Ed), 2020, 25(10): 1913-1924.
|
[49] |
Xu XH, Zheng N. Polydatin protects diabetic nephropathy rats from renal inflammation by regulating the TLR4/NF-κB signal pathway[J]. Chin J Hosp Pharm (中国医院药学杂志), 2018, 38(16): 1677-1680.
|
[50] |
Su JX, Cai C, Zhang L, et al. Analysis on composition principles of prescriptions for diabetic nephropathy by using traditional Chinese medicine inheritance support system[J]. Chin J Integr Tradit West Nephrol (中国中西医结合肾病杂志), 2017, 18(1): 34-37.
|
[51] |
Kong C, Chen DF, Song ZH, et al. Exploration of treating diabetic nephropathy wth Astragalus and Angelica[J]. Liaoning J Tradit Chin Med (辽宁中医杂志), 2018, 45(2): 267-269.
|
[52] |
Zhang XL, Zhou J, Yin YH. Effect of huangqi(astrgali Radix) and Danggui(angelicae Sinensis radix) herbal pair on diabetic nephropathy and its influence on Nrf2 pathway[J]. Shandong J Tradit Chin Med (山东中医杂志), 2020, 39(9): 944-949.
|
[53] |
Su WN, Li XJ, Sui ZY, et al. The effects of Huangqi and Shanyao compatible powder on antioxidation in rats with diabetic nephropathy[J]. Henan Tradit Chin Med (河南中医), 2017, 37(10): 1735-1737.
|
[54] |
Li XJ, Liu J, Sui ZY. Protective effect of Astragalus and Chinese Yam powder on diabetic nephropathy rats[J]. Lishizhen Med Mater Med Res (时珍国医国药), 2014, 25(1):46-48.
|
[55] |
Liu Y, Wang L. Research progress of Cornus officinalis in treating diabetic nephropathy[J]. Clin J Tradit Chin Med (中医药临床杂志), 2022, 34(9): 1778-1782.
|
[56] |
Liu M, Wang HS, Liang RF, et al. Compatibility research of drug pair Poria-alismatis rhizoma and its effects on nephropathy model rats[J]. China Pharm (中国药师), 2022, 25(8): 1317-1323.
|
[57] |
Chen X. Effects of Huangqi Decoction on renal lesion in diabetic nephropathy mice[J]. Liaoning J Tradit Chin Med (辽宁中医杂志), 2021, 48(11): 189-192, 228.
|
[58] |
Chen X, Wang H, Jiang MQ, et al. Huangqi (astragalus) decoction ameliorates diabetic nephropathy via IRS1-PI3K-GLUT signaling pathway[J]. Am J Transl Res, 2018, 10(8): 2491-2501.
|
[59] |
Xu ZJ, Shu S, Li ZJ, et al. Liuwei Dihuang pill treats diabetic nephropathy in rats by inhibiting of TGF-β/SMADS, MAPK, and NF-kB and upregulating expression of cytoglobin in renal tissues[J]. Medicine, 2017, 96(3):
|
[60] |
Shu S, Zhang Y, Wang Q, et al. Liuwei Dihuang pill attenuates diabetic nephropathy by inhibiting renal fibrosis via TGF-β/Smad2/3 pathway[J]. Comput Math Methods Med, 2022, 2022: 5063636.
|
[61] |
Tang D, He WJ, Zhang ZT, et al. Protective effects of Huang-Lian-Jie-Du Decoction on diabetic nephropathy through regulating AGEs/RAGE/Akt/Nrf2 pathway and metabolic profiling in db/db mice[J]. Phytomedicine, 2022, 95: 153777.
|
[62] |
Huang QM, He Y. Effects of Shenkang Pills on renal function and insulin resistance in rats with diabetic nephropathy[J]. Northwest Pharm J (西北药学杂志), 2022, 37(2): 72-76.
|
[63] |
Wang FJ, Fan JE, Pei TT, et al. Effects of Shenkang pills on early-stage diabetic nephropathy in db/db mice via inhibiting AURKB/RacGAP1/RhoA signaling pathway[J]. Front Pharmacol, 2022, 13: 781806.
|
[64] |
Zhu BB, Fang J, Ju ZC, et al. Zuogui Wan ameliorates high glucose-induced podocyte apoptosis and improves diabetic nephropathy in db/db mice[J]. Front Pharmacol, 2022, 13: 991976.
|
[65] |
Och A, Och M, Nowak R, et al. Berberine, a herbal metabolite in the metabolic syndrome: the risk factors, course, and consequences of the disease[J]. Molecules, 2022, 27(4): 1351.
|
[66] |
Di S, Han L, An XD, et al. In silico network pharmacology and in vivo analysis of berberine-related mechanisms against type 2 diabetes mellitus and its complications[J]. J Ethnopharmacol, 2021, 276: 114180.
|
1. |
李长青,辛林峰,秦琴,黄慧梅,倪慧,李佳乐,张琳. 剪切DR3第10外显子促进乳腺癌MDA-MB-231细胞株增殖. 华夏医学. 2024(03): 41-47 .
![]() |