• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
ZHU Lijuan, YANG Jie, WEN Xiaodong, ZHOU Ke. Progress of experimental research on prevention and treatment of diabetic kidney disease by traditional Chinese medicine[J]. Journal of China Pharmaceutical University, 2023, 54(5): 644-652. DOI: 10.11665/j.issn.1000-5048.2023032901
Citation: ZHU Lijuan, YANG Jie, WEN Xiaodong, ZHOU Ke. Progress of experimental research on prevention and treatment of diabetic kidney disease by traditional Chinese medicine[J]. Journal of China Pharmaceutical University, 2023, 54(5): 644-652. DOI: 10.11665/j.issn.1000-5048.2023032901

Progress of experimental research on prevention and treatment of diabetic kidney disease by traditional Chinese medicine

Funds: This study was supported by the National Key Research and Development Program of China(No.2018YFC1704503)
More Information
  • Received Date: March 28, 2023
  • Revised Date: October 19, 2023
  • Diabetic kidney disease (DKD) is one of the main complications of diabetes, and also the leading cause of the end-stage renal disease (ESRD).The main clinical manifestations are albuminuria and decreased glomerular filtration rate.DKD seriously affects the quality of life of sufferers and places a huge financial burden on them. Traditional Chinese medicine (TCM) has accumulated rich experience in treating DKD.This paper analyzed and summarized the recent treatment of DKD with traditional Chinese medicine from three aspects: active ingredients of TCM, TCM pairs and TCM prescriptions, so as to provide new ideas for the majority of researchers in experimental research.
  • [1]
    Stephens JW, Brown KE, Min T. Chronic kidney disease in type 2 diabetes: implications for managing glycaemic control, cardiovascular and renal risk[J]. Diabetes Obes Metab, 2020, 22(Suppl 1): 32-45.
    [2]
    Xu CB, Xiang SW. Research progress in prevention and treatment of diabetic nephropathy based on pathogenesis of qi deficiency and blood stasis[J]. J Pract Tradit Chin Intern Med (实用中医内科杂志), 2023, 37(4): 77-79.
    [3]
    Zhou Y, Liu JT, Yang YF, et al. Analysis of pathogenesis and treatment of diabetic nephropathy from the theory of “deficiency, phlegm, blood stasis and toxin”[J]. J Liaoning Univ Tradit Chin Med (辽宁中医药大学学报), 2022, 24(12): 78-81.
    [4]
    Su KL, Zhu Y, Guo LZ. Study on clinical experience of Chinese medicine great master ZHOU Zhong-ying in treating diabetic nephropathy(DN)[J]. China J Tradit Chin Med Pharm (中华中医药杂志), 2012, 27(11): 2854-2857.
    [5]
    Zhao Y, Zhang LZ, Fan WW, et al. Chinese doctor ZHANG Da-ning''s experience in treating diabetic nephropathy[J]. Shaanxi J Tradit Chin Med (陕西中医), 2021, 42(06): 773-775, 788.
    [6]
    Hu HJ, Zhou Y, Liang LW, et al. CHEN boping’s experience of treatment to diabetic nephropathy[J]. J Tradit Chin Med Lit (中医文献杂志), 2019, 37(4): 38-40.
    [7]
    Tuttle KR, Agarwal R, Alpers CE, et al. Molecular mechanisms and therapeutic targets for diabetic kidney disease[J]. Kidney Int, 2022, 102(2): 248-260.
    [8]
    Magee C, Grieve DJ, Watson CJ, et al. Diabetic nephropathy: a tangled web to unweave[J]. Cardiovasc Drugs Ther, 2017, 31(5/6): 579-592.
    [9]
    Alicic RZ, Neumiller JJ, Johnson EJ, et al. Sodium-glucose cotransporter 2 inhibition and diabetic kidney disease[J]. Diabetes, 2019, 68(2): 248-257.
    [10]
    Sanajou D, Ghorbani Haghjo A, Argani H, et al. AGE-RAGE axis blockade in diabetic nephropathy: current status and future directions[J]. Eur J Pharmacol, 2018, 833: 158-164.
    [11]
    Jadoon A, Mathew AV, Byun J, et al. Gut microbial product predicts cardiovascular risk in chronic kidney disease patients[J]. Am J Nephrol, 2018, 48(4): 269-277.
    [12]
    Salem RM, Todd JN, Sandholm N, et al. Genome-wide association study of diabetic kidney disease highlights biology involved in glomerular basement membrane collagen[J]. J Am Soc Nephrol, 2019, 30(10): 2000-2016.
    [13]
    Naaman S, Bakris G. Slowing diabetic kidney disease progression: where do we stand today[J]? Compendia, 2021, 2021(1): 28-32.
    [14]
    Chen X, Wu R, Kong YW, et al. Tanshinone IIA attenuates renal damage in STZ-induced diabetic rats via inhibiting oxidative stress and inflammation[J]. Oncotarget, 2017, 8(19): 31915-31922.
    [15]
    Xu SJ, He LJ, Ding KK, et al. Tanshinone IIA ameliorates streptozotocin-induced diabetic nephropathy, partly by attenuating PERK pathway-induced fibrosis[J]. Drug Des Devel Ther, 2020, 14: 5773-5782.
    [16]
    Liu JL, Zhang YM, Sheng HQ, et al. Hyperoside suppresses renal inflammation by regulating macrophage polarization in mice with type 2 diabetes mellitus[J]. Front Immunol, 2021, 12: 733808.
    [17]
    Liu YQ, Li Y, Xu L, et al. Quercetin attenuates podocyte apoptosis of diabetic nephropathy through targeting EGFR signaling[J]. Front Pharmacol, 2021, 12: 792777.
    [18]
    Sheng HQ, Zhang D, Zhang JQ, et al. Kaempferol attenuated diabetic nephropathy by reducing apoptosis and promoting autophagy through AMPK/mTOR pathways[J]. Front Med, 2022, 9: 986825.
    [19]
    Sharma D, Gondaliya P, Tiwari V, et al. Kaempferol attenuates diabetic nephropathy by inhibiting RhoA/Rho-kinase mediated inflammatory signalling[J]. Biomedecine Pharmacother, 2019, 109: 1610-1619.
    [20]
    Alshehri AS. Kaempferol attenuates diabetic nephropathy in streptozotocin-induced diabetic rats by a hypoglycaemic effect and concomitant activation of the Nrf-2/Ho-1/antioxidants axis[J]. Arch Physiol Biochem, 2023, 129(4): 984-997.
    [21]
    Qi MY, He YH, Cheng Y, et al. Icariin ameliorates streptozocin-induced diabetic nephropathy through suppressing the TLR4/NF-κB signal pathway[J]. Food Funct, 2021, 12(3): 1241-1251.
    [22]
    Ding XS, Zhao HZ, Qiao C. Icariin protects podocytes from NLRP3 activation by Sesn2-induced mitophagy through the Keap1-Nrf2/HO-1 axis in diabetic nephropathy[J]. Phytomedicine, 2022, 99: 154005.
    [23]
    Liu Y, Ye J, Cao YH, et al. Silibinin ameliorates diabetic nephropathy via improving diabetic condition in the mice[J]. Eur J Pharmacol, 2019, 845: 24-31.
    [24]
    Zhu LP, Han JK, Yuan RR, et al. Berberine ameliorates diabetic nephropathy by inhibiting TLR4/NF-κB pathway[J]. Biol Res, 2018, 51(1): 9.
    [25]
    Ni WJ, Guan XM, Zeng J, et al. Berberine regulates mesangial cell proliferation and cell cycle to attenuate diabetic nephropathy through the PI3K/Akt/AS160/GLUT1 signalling pathway[J]. J Cell Mol Med, 2022, 26(4): 1144-1155.
    [26]
    Zhai JJ, Li ZP, Zhang HF, et al. Coptisine ameliorates renal injury in diabetic rats through the activation of Nrf2 signaling pathway[J]. Naunyn Schmiedebergs Arch Pharmacol, 2020, 393(1): 57-65.
    [27]
    Rai U, Kosuru R, Prakash S, et al. Tetramethylpyrazine alleviates diabetic nephropathy through the activation of Akt signalling pathway in rats[J]. Eur J Pharmacol, 2019, 865: 172763.
    [28]
    Chen JG, Pang Q, Zeng W, et al. Therapeutic effect of betaine on diabetic nephropathy in db/db mice[J]. J Third Mil Med Univ (第三军医大学学报), 2012, 34(11): 1040-1043.
    [29]
    Zhu ML, Wang HY, Chen JW, et al. Sinomenine improve diabetic nephropathy by inhibiting fibrosis and regulating the JAK2/STAT3/SOCS1 pathway in streptozotocin-induced diabetic rats[J]. Life Sci, 2021, 265: 118855.
    [30]
    Liu YW, Hao YC, Chen YJ, et al. Protective effects of sarsasapogenin against early stage of diabetic nephropathy in rats[J]. Phytother Res, 2019, 33(9): 2470.
    [31]
    Li XZ, Jiang H, Xu L, et al. Sarsasapogenin restores podocyte autophagy in diabetic nephropathy by targeting GSK3β signaling pathway[J]. Biochem Pharmacol, 2021, 192: 114675.
    [32]
    Tang ZZ, Zhang YM, Zheng T, et al. Sarsasapogenin alleviates diabetic nephropathy through suppression of chronic inflammation by down-regulating PAR-1: in vivo and in vitro study[J]. Phytomedicine, 2020, 78: 153314.
    [33]
    Wu H, Fu LZ, Zhao Y, et al. Platycodin D improves renal injury in diabetic nephropathy model rats by regulating oxidative stress mediated PI3K/Akt/mTOR signaling pathway[J]. Chin J Pharmacol Toxicol (中国药理学与毒理学杂志), 2022, 36(3): 170-176.
    [34]
    Zhong YJ, Luo RL, Liu Q, et al. Jujuboside A ameliorates high fat diet and streptozotocin induced diabetic nephropathy via suppressing oxidative stress, apoptosis, and enhancing autophagy[J]. Food Chem Toxicol, 2022, 159: 112697.
    [35]
    Yang F, Liu CN. Study on protective effect of PPD-25-OH on renal function in rats with diabetic nephropathy[J]. Chongqing Med (重庆医学), 2022, 51(6): 916-919, 923.
    [36]
    Su J, Gao CT, Xie L, et al. Astragaloside II ameliorated podocyte injury and mitochondrial dysfunction in streptozotocin-induced diabetic rats[J]. Front Pharmacol, 2021, 12: 638422.
    [37]
    Peng J. Protective effect of Polygonatum saponin on renal injury in diabetic nephropathy rats and the effect of Wnt/β-catenin signaling pathway[J]. Chin Tradit Pat Med (中成药), 2019, 41(10): 2518-2521.
    [38]
    Zhao QH, Li JJ, Yan J, et al. Lycium barbarum polysaccharides ameliorates renal injury and inflammatory reaction in alloxan-induced diabetic nephropathy rabbits[J]. Life Sci, 2016, 157: 82-90.
    [39]
    Meng X, Wei MM, Wang D, et al. Astragalus polysaccharides protect renal function and affect the TGF-β/Smad signaling pathway in streptozotocin-induced diabetic rats[J]. J Int Med Res, 2020, 48(5): 300060520903612.
    [40]
    Ma J, Rui HB, Chen QZ, et al. Study on anti-inflammatory and therapeutic properties of Ganoderma lucidum polysaccharides on diabetic nephropathy in streptozotocin-induced mice[J]. J Nanjing Med Univ Nat Sci (南京医科大学学报 自然科学版), 2019, 39(3): 326-331, 337.
    [41]
    Hu Y, Wang SX, Wu FY, et al. Effects and mechanism of Ganoderma lucidum polysaccharides in the treatment of diabetic nephropathy in streptozotocin-induced diabetic rats[J]. Biomed Res Int, 2022, 2022: 4314415.
    [42]
    Bai Y, Yang LX, He Y, et al. Effect of angelica polysaccharide on diabetic nephropathy rats through TLR4/NF-κB signaling pathway[J]. Chin Tradit Pat Med (中成药), 2021, 43(3): 755-760.
    [43]
    Feng YC, Weng HB, Ling LJ, et al. Modulating the gut microbiota and inflammation is involved in the effect of Bupleurum polysaccharides against diabetic nephropathy in mice[J]. Int J Biol Macromol, 2019, 132: 1001-1011.
    [44]
    Liao ZZ, Zhang JY, Wang JY, et al. The anti-nephritic activity of a polysaccharide from okra (Abelmoschus esculentus (L.) Moench) via modulation of AMPK-Sirt1-PGC-1α signaling axis mediated anti-oxidative in type 2 diabetes model mice[J]. Int J Biol Macromol, 2019, 140: 568-576.
    [45]
    Zhang WJ, Lai XH, Chen JW. Effect of yam polysaccharides in the treatment of obese diabetic nephropathy rats and its effect on renal function and intestinal microecology[J]. Chin J Microecol (中国微生态学杂志), 2021, 33(1): 37-42.
    [46]
    Qiao J, Zhao Y, Chen X, et al. Effect of Rhein on renal injury in type 2 diabetic rats based on PI3K/Akt/FoxO1 pathway[J]. Chin Tradit Pat Med (中成药), 2023, 45(2): 609-613.
    [47]
    Cai TT, Ye XL, Li RR, et al. Resveratrol modulates the gut microbiota and inflammation to protect against diabetic nephropathy in mice[J]. Front Pharmacol, 2020, 11: 1249.
    [48]
    Zhao YH, Fan YJ. Resveratrol improves lipid metabolism in diabetic nephropathy rats[J]. Front Biosci (Landmark Ed), 2020, 25(10): 1913-1924.
    [49]
    Xu XH, Zheng N. Polydatin protects diabetic nephropathy rats from renal inflammation by regulating the TLR4/NF-κB signal pathway[J]. Chin J Hosp Pharm (中国医院药学杂志), 2018, 38(16): 1677-1680.
    [50]
    Su JX, Cai C, Zhang L, et al. Analysis on composition principles of prescriptions for diabetic nephropathy by using traditional Chinese medicine inheritance support system[J]. Chin J Integr Tradit West Nephrol (中国中西医结合肾病杂志), 2017, 18(1): 34-37.
    [51]
    Kong C, Chen DF, Song ZH, et al. Exploration of treating diabetic nephropathy wth Astragalus and Angelica[J]. Liaoning J Tradit Chin Med (辽宁中医杂志), 2018, 45(2): 267-269.
    [52]
    Zhang XL, Zhou J, Yin YH. Effect of huangqi(astrgali Radix) and Danggui(angelicae Sinensis radix) herbal pair on diabetic nephropathy and its influence on Nrf2 pathway[J]. Shandong J Tradit Chin Med (山东中医杂志), 2020, 39(9): 944-949.
    [53]
    Su WN, Li XJ, Sui ZY, et al. The effects of Huangqi and Shanyao compatible powder on antioxidation in rats with diabetic nephropathy[J]. Henan Tradit Chin Med (河南中医), 2017, 37(10): 1735-1737.
    [54]
    Li XJ, Liu J, Sui ZY. Protective effect of Astragalus and Chinese Yam powder on diabetic nephropathy rats[J]. Lishizhen Med Mater Med Res (时珍国医国药), 2014, 25(1):46-48.
    [55]
    Liu Y, Wang L. Research progress of Cornus officinalis in treating diabetic nephropathy[J]. Clin J Tradit Chin Med (中医药临床杂志), 2022, 34(9): 1778-1782.
    [56]
    Liu M, Wang HS, Liang RF, et al. Compatibility research of drug pair Poria-alismatis rhizoma and its effects on nephropathy model rats[J]. China Pharm (中国药师), 2022, 25(8): 1317-1323.
    [57]
    Chen X. Effects of Huangqi Decoction on renal lesion in diabetic nephropathy mice[J]. Liaoning J Tradit Chin Med (辽宁中医杂志), 2021, 48(11): 189-192, 228.
    [58]
    Chen X, Wang H, Jiang MQ, et al. Huangqi (astragalus) decoction ameliorates diabetic nephropathy via IRS1-PI3K-GLUT signaling pathway[J]. Am J Transl Res, 2018, 10(8): 2491-2501.
    [59]
    Xu ZJ, Shu S, Li ZJ, et al. Liuwei Dihuang pill treats diabetic nephropathy in rats by inhibiting of TGF-β/SMADS, MAPK, and NF-kB and upregulating expression of cytoglobin in renal tissues[J]. Medicine, 2017, 96(3): e5879.
    [60]
    Shu S, Zhang Y, Wang Q, et al. Liuwei Dihuang pill attenuates diabetic nephropathy by inhibiting renal fibrosis via TGF-β/Smad2/3 pathway[J]. Comput Math Methods Med, 2022, 2022: 5063636.
    [61]
    Tang D, He WJ, Zhang ZT, et al. Protective effects of Huang-Lian-Jie-Du Decoction on diabetic nephropathy through regulating AGEs/RAGE/Akt/Nrf2 pathway and metabolic profiling in db/db mice[J]. Phytomedicine, 2022, 95: 153777.
    [62]
    Huang QM, He Y. Effects of Shenkang Pills on renal function and insulin resistance in rats with diabetic nephropathy[J]. Northwest Pharm J (西北药学杂志), 2022, 37(2): 72-76.
    [63]
    Wang FJ, Fan JE, Pei TT, et al. Effects of Shenkang pills on early-stage diabetic nephropathy in db/db mice via inhibiting AURKB/RacGAP1/RhoA signaling pathway[J]. Front Pharmacol, 2022, 13: 781806.
    [64]
    Zhu BB, Fang J, Ju ZC, et al. Zuogui Wan ameliorates high glucose-induced podocyte apoptosis and improves diabetic nephropathy in db/db mice[J]. Front Pharmacol, 2022, 13: 991976.
    [65]
    Och A, Och M, Nowak R, et al. Berberine, a herbal metabolite in the metabolic syndrome: the risk factors, course, and consequences of the disease[J]. Molecules, 2022, 27(4): 1351.
    [66]
    Di S, Han L, An XD, et al. In silico network pharmacology and in vivo analysis of berberine-related mechanisms against type 2 diabetes mellitus and its complications[J]. J Ethnopharmacol, 2021, 276: 114180.
  • Related Articles

    [1]JIANG Yun, LEI Yajuan, XIE Yingying, SHI Rong, LIU Yanming. Screening of 12 elemental impurities in pharmaceutical excipient grades of titanium dioxide from various sources and their correlations with whiteness[J]. Journal of China Pharmaceutical University, 2024, 55(6): 750-757. DOI: 10.11665/j.issn.1000-5048.2023122803
    [2]WANG Huijian, WANG Yanfei, SU Wei, FU Qiang. Effects of pharmaceutical excipients on drug supersaturation in amorphous solid dispersions[J]. Journal of China Pharmaceutical University, 2024, 55(6): 725-733. DOI: 10.11665/j.issn.1000-5048.2023123001
    [3]LIU Juan, PANG Yuecheng, CHEN Yanmin, ZUO Shuhang, GAO Yongji. Determination of the content of pregabalin gastric retention sustained- release tablets and influence of high viscosity excipients on the determination results[J]. Journal of China Pharmaceutical University, 2024, 55(4): 478-484. DOI: 10.11665/j.issn.1000-5048.2023031302
    [4]LIU Wenxin, LI Yan, YUAN Yaozuo, JIA Huanhuan, CHEN Minhui, ZHANG Jinlin. Analysis of the causes for abnormal dissolution of lansoprazole enteric-coated tablets by multiple techniques and different dimensions[J]. Journal of China Pharmaceutical University, 2024, 55(2): 224-229. DOI: 10.11665/j.issn.1000-5048.2023052401
    [5]SUN Chunmeng, CHEN Lei, LI Yanan, SONG Zonghua, YANG Zhaopeng, TU Jiasheng. Interpretation of the Guideline for Pharmaceutical Excipients of Animal Origin[J]. Journal of China Pharmaceutical University, 2022, 53(3): 376-382. DOI: 10.11665/j.issn.1000-5048.20220316
    [6]MENG Yue, ZHANG Ziqiang, HE Shuwang, YAO Jing. Advances in research on pediatric oral liquid dosage forms[J]. Journal of China Pharmaceutical University, 2021, 52(1): 113-121. DOI: 10.11665/j.issn.1000-5048.20210116
    [7]SU Shina, LYU Zhufen, LIANG Chaofeng, LU Kewei, HUANG Yunran, CHEN Yanzhong. Advances of new excipients and technique in colon-specific preparations[J]. Journal of China Pharmaceutical University, 2017, 48(2): 242-250. DOI: 10.11665/j.issn.1000-5048.20170217
    [8]Molecular Interaction in Solvents Between Water Insoluble Drug Nitrazepam and Pharmaceutical Excipients[J]. Journal of China Pharmaceutical University, 1998, (6): 408-412.
    [9]INVESTIGATION OF THE INFLUENCE OF EXCIPIENTS ON THE STABILITY OF SODIUM OXACILLIN BY PYROLYSIS GAS CHROMATOGRAPHY[J]. Journal of China Pharmaceutical University, 1989, (1): 10-12.
    [10]Zheng Liangyuan, Ping Qineng, Liu Guojie, Tu Xide. THE EFFECTS OF SOME EXCIPIENTS ON THE ABSORPTION OF TETRACYCLINE[J]. Journal of China Pharmaceutical University, 1982, (2): 51-57.
  • Cited by

    Periodical cited type(1)

    1. 李长青,辛林峰,秦琴,黄慧梅,倪慧,李佳乐,张琳. 剪切DR3第10外显子促进乳腺癌MDA-MB-231细胞株增殖. 华夏医学. 2024(03): 41-47 .

    Other cited types(0)

Catalog

    Article views (555) PDF downloads (335) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return