Citation: | LIU Xiaohan, TAN Yunying, LI Qiang, CHEN Xu, FU Junjie, YIN Jian. Synthesis and antitumor activity evaluation of glycoconjugates derived from natural product harmine[J]. Journal of China Pharmaceutical University, 2023, 54(6): 729-742. DOI: 10.11665/j.issn.1000-5048.2023041101 |
[1] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30.
|
[2] |
Yang GX, Xiong J, Hu JF. 2017’s advanced natural products chemistry researches in China(1)[J]. J China Pharm Univ (中国药科大学学报), 2018, 49(5): 511-520.
|
[3] |
Alam MM, Malebari AM, Syed N, et al. Design, synthesis and molecular docking studies of thymol based 1, 2, 3-triazole hybrids as thymidylate synthase inhibitors and apoptosis inducers against breast cancer cells[J]. Bioorg Med Chem, 2021, 38: 116136.
|
[4] |
Wang HB, He Y, Jian ML, et al. Breaking the bottleneck in anticancer drug development: efficient utilization of synthetic biology[J]. Molecules, 2022, 27(21): 7480.
|
[5] |
Kumar K, Wang P, Wilson J, et al. Synthesis and biological validation of a harmine-based, central nervous system (CNS)-avoidant, selective, human β-cell regenerative dual-specificity tyrosine phosphorylation-regulated kinase A (DYRK1A) inhibitor[J]. J Med Chem, 2020, 63(6): 2986-3003.
|
[6] |
Zhu YG, Lv YX, Guo CY, et al. Harmine inhibits the proliferation and migration of glioblastoma cells via the FAK/AKT pathway[J]. Life Sci, 2021, 270: 119112.
|
[7] |
Zhang L, Li DC, Yu SL. Pharmacological effects of harmine and its derivatives: a review[J]. Arch Pharm Res, 2020, 43(12): 1259-1275.
|
[8] |
Lakshmi Manasa K, Thatikonda S, Sigalapalli DK, et al. Design and synthesis of β-carboline linked aryl sulfonyl piperazine derivatives: DNA topoisomerase II inhibition with DNA binding and apoptosis inducing ability[J]. Bioorg Chem, 2020, 101: 103983.
|
[9] |
Marconi GD, Fonticoli L, Rajan TS, et al. Epithelial-mesenchymal transition (EMT): the type-2 EMT in wound healing, tissue regeneration and organ fibrosis[J]. Cells, 2021, 10(7): 1587.
|
[10] |
Zhao TM, Yang Y, Yang J, et al. Harmine-inspired design and synthesis of benzo[d]imidazo[2, 1-b]thiazole derivatives bearing 1, 3, 4-oxadiazole moiety as potential tumor suppressors[J]. Bioorg Med Chem, 2021, 46: 116367.
|
[11] |
He JR, Chen SS, Yu T, et al. Harmine suppresses breast cancer cell migration and invasion by regulating TAZ-mediated epithelial-mesenchymal transition[J]. Am J Cancer Res, 2022, 12(6): 2612-2626.
|
[12] |
Nafie E, Lolarga J, Lam B, et al. Harmine inhibits breast cancer cell migration and invasion by inducing the degradation of Twist1[J]. PLoS One, 2021, 16(2):
|
[13] |
Lu DH, Qu LL, Wang C, et al. Harmine-based dual inhibitors targeting histone deacetylase (HDAC) and DNA as a promising strategy for cancer therapy[J]. Bioorg Chem, 2022, 120: 105604.
|
[14] |
Du HT, Tian S, Chen JC, et al. Synthesis and biological evaluation of N9-substituted harmine derivatives as potential anticancer agents[J]. Bioorg Med Chem Lett, 2016, 26(16): 4015-4019.
|
[15] |
Tang L. Design, synthesis and antitumor activity in vitro of derivatives of harmine N9-cinnamic acid(去氢骆驼蓬碱N9位-肉桂酸衍生物的设计、合成与体外抗肿瘤活性研究)[D]. Lanzhou: Lanzhou University, 2020.
|
[16] |
Filali I, Bouajila J, Znati M, et al. Synthesis of new isoxazoline derivatives from harmine and evaluation of their anti-Alzheimer, anti-cancer and anti-inflammatory activities[J]. J Enzyme Inhib Med Chem, 2015, 30(3): 371-376.
|
[17] |
Frédérick R, Bruyère C, Vancraeynest C, et al. Novel trisubstituted harmine derivatives with original in vitro anticancer activity[J]. J Med Chem, 2012, 55(14): 6489-6501.
|
[18] |
Fu JJ, Yang JX, Seeberger PH, et al. Glycoconjugates for glucose transporter-mediated cancer-specific targeting and treatment[J]. Carbohydr Res, 2020, 498: 108195.
|
[19] |
Zhang XR, Ruan Q, Jiang YH, et al. Evaluation of 99mTc-CN5DG as a broad-spectrum SPECT probe for tumor imaging[J]. Transl Oncol, 2021, 14(1): 100966.
|
[20] |
Wang HF, Yang XD, Zhao CL, et al. Glucose-conjugated platinum(IV) complexes as tumor-targeting agents: design, synthesis and biological evaluation[J]. Bioorg Med Chem, 2019, 27(8): 1639-1645.
|
[21] |
Chen F, Huang GL. Application of glycosylation in targeted drug delivery[J]. Eur J Med Chem, 2019, 182: 111612.
|
[22] |
Cao J, Cui SS, Li SW, et al. Targeted cancer therapy with a 2-deoxyglucose-based adriamycin complex[J]. Cancer Res, 2013, 73(4): 1362-1373.
|
[23] |
Punganuru SR, Mostofa AGM, Madala HR, et al. Potent anti-proliferative actions of a non-diuretic glucosamine derivative of ethacrynic acid[J]. Bioorg Med Chem Lett, 2016, 26(12): 2829-2833.
|
[24] |
Wang SQ, Chen YT, Xia C, et al. Synthesis and evaluation of glycosylated quercetin to enhance neuroprotective effects on cerebral ischemia-reperfusion[J]. Bioorg Med Chem, 2022, 73: 117008.
|
[25] |
He QL, Minn I, Wang QL, et al. Targeted delivery and sustained antitumor activity of triptolide through glucose conjugation[J]. Angew Chem Int Ed, 2016, 55(39): 12035-12039.
|
[26] |
Henderson AS, Medina S, Bower JF, et al. Nucleophilic aromatic substitution (SNAr) as an approach to challenging carbohydrate-aryl ethers[J]. Org Lett, 2015, 17(19): 4846-4849.
|