Citation: | WANG Chao, XIAO Fu, LI Miaozhu, PAN Ying, DING Xiao, REN Feng, ZHAVORONKOV Alex, WANG Yazhou. Application progress of artificial intelligence in the screening and identification of drug targets[J]. Journal of China Pharmaceutical University, 2023, 54(3): 269-281. DOI: 10.11665/j.issn.1000-5048.2023041102 |
[1] |
Yang X, Wang YF, Byrne R, et al. Concepts of artificial intelligence for computer-assisted drug discovery[J]. Chem Rev, 2019, 119(18): 10520-10594.
|
[2] |
Sun DX, Gao W, Hu HX, et al. Why 90% of clinical drug development fails and how to improve it[J]? Acta Pharm Sin B, 2022, 12(7): 3049-3062.
|
[3] |
Mak KK, Pichika MR. Artificial intelligence in drug development: present status and future prospects[J]. Drug Discov Today, 2019, 24(3): 773-780.
|
[4] |
Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: progress, challenges and recommendations[J]. Nat Rev Drug Discov, 2019, 18(1): 41-58.
|
[5] |
Merico D, Spickett C, O''Hara M, et al. ATP7B variant c.1934T > G p.Met645Arg causes Wilson disease by promoting exon 6 skipping[J]. NPJ Genom Med, 2020, 5: 16.
|
[6] |
Zhavoronkov A, Ivanenkov YA, Aliper A, et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors[J]. Nat Biotechnol, 2019, 37(9): 1038-1040.
|
[7] |
Senior AW, Evans R, Jumper J, et al. Improved protein structure prediction using potentials from deep learning[J]. Nature, 2020, 577(7792): 706-710.
|
[8] |
Huawei T Technologies Co Ltd. A general introduction to artificial intelligence[M]//Artificial Intelligence Technology. Singapore: Springer Nature Singapore, 2022: 1-41.
|
[9] |
Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development[J]. Nat Rev Drug Discov, 2019, 18(6): 463-477.
|
[10] |
Vijayan RSK, Kihlberg J, Cross JB, et al. Enhancing preclinical drug discovery with artificial intelligence[J]. Drug Discov Today, 2022, 27(4): 967-984.
|
[11] |
Nag S, Baidya ATK, Mandal A, et al. Deep learning tools for advancing drug discovery and development[J]. 3 Biotech, 2022, 12(5): 110.
|
[12] |
LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
|
[13] |
McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity[J]. Bull Math Biol, 1990, 52(1/2): 99-115.
|
[14] |
Zhao WX, Zhou K, Li j, et al. A survey of large language models[J].arXiv,2023:2303.18223.
|
[15] |
Santos R, Ursu O, Gaulton A, et al. A comprehensive map of molecular drug targets[J]. Nat Rev Drug Discov, 2017, 16(1): 19-34.
|
[16] |
Narain N, Kiebish M, Vishnudas V, et al. CSAO-1. Interrogative Biology: Unraveling insights into causal disease drivers by use of a dynamic systems biology and Bayesian AI to identify the intersect of disease and healthy signatures[J]. Neuro Oncol Adv, 2021, 3(
|
[17] |
Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease[J]. Lancet, 2020, 395(10223): e30-e31.
|
[18] |
Zheng SJ, Rao JH, Song Y, et al. PharmKG: a dedicated knowledge graph benchmark for biomedical data mining[J]. Brief Bioinform, 2021, 22(4):
|
[19] |
Ozerov IV, Lezhnina KV, Izumchenko E, et al. In silico Pathway Activation Network Decomposition Analysis (iPANDA) as a method for biomarker development[J]. Nat Commun, 2016, 7(1): 1-11.
|
[20] |
Lee A, Lee K, Kim D. Using reverse docking for target identification and its applications for drug discovery[J]. Expert Opin Drug Discov, 2016, 11(7): 707-715.
|
[21] |
Gao ZT, Li HL, Zhang HL, et al. PDTD: a web-accessible protein database for drug target identification[J]. BMC Bioinformatics, 2008, 9: 104.
|
[22] |
Wang F, Wu FX, Li CZ, et al. ACID: a free tool for drug repurposing using consensus inverse docking strategy[J]. J Cheminform, 2019, 11(1): 73.
|
[23] |
Wang X, Shen YH, Wang SW, et al. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database[J]. Nucleic Acids Res, 2017, 45(W1): W356-W360.
|
[24] |
Dana JM, Gutmanas A, Tyagi N, et al. SIFTS: updated Structure Integration with Function, Taxonomy and Sequences resource allows 40-fold increase in coverage of structure-based annotations for proteins[J]. Nucleic Acids Res, 2019, 47(D1): D482-D489.
|
[25] |
AlQuraishi M. Machine learning in protein structure prediction[J]. Curr Opin Chem Biol, 2021, 65: 1-8.
|
[26] |
Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589.
|
[27] |
Baek M, DiMaio F, Anishchenko I, et al. Accurate prediction of protein structures and interactions using a three-track neural network[J]. Science, 2021, 373(6557): 871-876.
|
[28] |
Lin ZM, Akin H, Rao R, et al. Evolutionary-scale prediction of atomic-level protein structure with a language model[J]. Science, 2023, 379(6637): 1123-1130.
|
[29] |
Chowdhury R, Bouatta N, Biswas S, et al. Single-sequence protein structure prediction using a language model and deep learning[J]. Nat Biotechnol, 2022, 40(11): 1617-1623.
|
[30] |
Xie QZ, Luong MT, Hovy E, et al. Self-training with noisy student improves ImageNet classification[C]//
|
[31] |
Yang ZY, Zeng XX, Zhao Y, et al. AlphaFold2 and its applications in the fields of biology and medicine[J]. Signal Transduct Target Ther, 2023, 8(1): 115.
|
[32] |
Marsango S, Barki N, Jenkins L, et al. Therapeutic validation of an orphan G protein-coupled receptor: the case of GPR84[J]. Br J Pharmacol, 2022, 179(14): 3529-3541.
|
[33] |
Mahindra A, Jenkins L, Marsango S, et al. Investigating the structure-activity relationship of 1, 2, 4-triazine G-protein-coupled receptor 84 (GPR84) antagonists[J]. J Med Chem, 2022, 65(16): 11270-11290.
|
[34] |
Schneider P, Schneider G. De novo design at the edge of chaos[J]. J Med Chem, 2016, 59(9): 4077-4086.
|
[35] |
Vanhaelen Q, Lin YC, Zhavoronkov A. The advent of generative chemistry[J]. ACS Med Chem Lett, 2020, 11(8): 1496-1505.
|
[36] |
Zhavoronkov A. Artificial intelligence for drug discovery, biomarker development, and generation of novel chemistry[J]. Mol Pharmaceutics, 2018, 15(10): 4311-4313.
|
[37] |
Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular design using machine learning: generative models for matter engineering[J]. Science, 2018, 361(6400): 360-365.
|
[38] |
SMILES Weininger D., a chemical language and information system. 1. Introduction to methodology and encoding rules[J]. J Chem Inf Comput Sci, 1988, 28(1): 31-36.
|
[39] |
You JX, Liu BW, Ying R, et al. Graph convolutional policy network for goal-directed molecular graph generation[J].arXiv,2018: 1806.02473.
|
[40] |
Zhou ZP, Kearnes S, Li L, et al. Optimization of molecules via deep reinforcement learning[J]. Sci Rep, 2019, 9(1): 10752.
|
[41] |
Gupta A, Müller AT, Huisman BJH, et al. Generative recurrent networks for de novo drug design[J]. Mol Inform, 2018, 37(1/2): 1700111.
|
[42] |
Segler MHS, Kogej T, Tyrchan C, et al. Generating focused molecule libraries for drug discovery with recurrent neural networks[J]. ACS Cent Sci, 2018, 4(1): 120-131.
|
[43] |
Olivecrona M, Blaschke T, Engkvist O, et al. Molecular de-novo design through deep reinforcement learning[J]. J Cheminform, 2017, 9(1): 48.
|
[44] |
Kingma DP, Welling M. Auto-encoding variational Bayes[J]. arXiv,2013:1312.6114.
|
[45] |
Gómez-Bombarelli R, Wei JN, Duvenaud D, et al. Automatic chemical design using a data-driven continuous representation of molecules[J]. ACS Cent Sci, 2018, 4(2): 268-276.
|
[46] |
Blaschke T, Olivecrona M, Engkvist O, et al. Application of generative autoencoder in de novo molecular design[J]. Mol Inform, 2018, 37(1/2): 1700123.
|
[47] |
De Cao N, Kipf T. MolGAN: an implicit generative model for small molecular graphs[J]. arXiv,2018: 1805.11973.
|
[48] |
Sanchez-Lengeling B, Outeiral C, Guimaraes GL, et al. Optimizing distributions over molecular space. An objective-reinforced generative adversarial network for inverse-design chemistry (ORGANIC)[J]. ChemRxiv, 2017:5309668.v3.
|
[49] |
Kadurin A, Aliper A, Kazennov A, et al. The cornucopia of meaningful leads: applying deep adversarial autoencoders for new molecule development in oncology[J]. Oncotarget, 2017, 8(7): 10883-10890.
|
[50] |
Polykovskiy D, Zhebrak A, Vetrov D, et al. Entangled conditional adversarial autoencoder for de novo drug discovery[J]. Mol Pharmaceutics, 2018, 15(10): 4398-4405.
|
[51] |
Shayakhmetov R, Kuznetsov M, Zhebrak A, et al. Molecular generation for desired transcriptome changes with adversarial autoencoders[J]. Front Pharmacol, 2020, 11: 269.
|
[52] |
Yu Y, Xu TY, Li JW, et al. A novel scalarized scaffold hopping algorithm with graph-based variational autoencoder for discovery of JAK1 inhibitors[J]. ACS Omega, 2021, 6(35): 22945-22954.
|
[53] |
Kadurin A, Nikolenko S, Khrabrov K, et al. druGAN: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico[J]. Mol Pharmaceutics, 2017, 14(9): 3098-3104.
|
[54] |
Putin E, Asadulaev A, Ivanenkov Y, et al. Reinforced adversarial neural computer for de novo molecular design[J]. J Chem Inf Model, 2018, 58(6): 1194-1204.
|
[55] |
Richter H, Satz AL, Bedoucha M, et al. DNA-encoded library-derived DDR1 inhibitor prevents fibrosis and renal function loss in a genetic mouse model of alport syndrome[J]. ACS Chem Biol, 2019, 14(1): 37-49.
|
[56] |
Verrall L, Burnet PWJ, Betts JF, et al. The neurobiology of D-amino acid oxidase and its involvement in schizophrenia[J]. Mol Psychiatry, 2010, 15(2): 122-137.
|
[57] |
Tang HF, Jensen K, Houang E, et al. Discovery of a novel class of d-amino acid oxidase inhibitors using the Schr?dinger computational platform[J]. J Med Chem, 2022, 65(9): 6775-6802.
|
[58] |
Bos PH, Houang EM, Ranalli F, et al. AutoDesigner, a De novo design algorithm for rapidly exploring large chemical space for lead optimization: application to the design and synthesis of d-amino acid oxidase inhibitors[J]. J Chem Inf Model, 2022, 62(8): 1905-1915.
|
[59] |
Beuming T, Martín H, Díaz-Rovira AM, et al. Are deep learning structural models sufficiently accurate for free-energy calculations? application of FEP+ to AlphaFold2-predicted structures[J]. J Chem Inf Model, 2022, 62(18): 4351-4360.
|
[60] |
Ren F, Ding X, Zheng M, et al. AlphaFold accelerates artificial intelligence powered drug discovery: efficient discovery of a novel CDK20 small molecule inhibitor[J]. Chem Sci, 2023, 14(6): 1443-1452.
|
[61] |
Pun FW, Liu BHM, Long X, et al. Identification of therapeutic targets for amyotrophic lateral sclerosis using PandaOmics-an AI-enabled biological target discovery platform[J]. Front Aging Neurosci, 2022, 14: 914017.
|
[62] |
Pun FW, Leung GHD, Leung HW, et al. Hallmarks of aging-based dual-purpose disease and age-associated targets predicted using PandaOmics AI-powered discovery engine[J]. Aging, 2022, 14(6): 2475-2506.
|
[63] |
Ivanenkov YA, Polykovskiy D, Bezrukov D, et al. Chemistry42: an AI-driven platform for molecular design and optimization[J]. J Chem Inf Model, 2023, 63(3): 695-701.
|
[64] |
Mok MT, Zhou JY, Tang WS, et al. CCRK is a novel signalling hub exploitable in cancer immunotherapy[J]. Pharmacol Ther, 2018, 186: 138-151.
|
[65] |
Chen W, Liu XS, Zhang SY, et al. Artificial intelligence for drug discovery: resources, methods, and applications[J]. Mol Ther Nucleic Acids, 2023, 31: 691-702.
|
1. |
李荣,范月蕾,赵晓勤,李丹丹,陈大明. 新药研发进展与发展态势分析. 生命科学. 2025(01): 86-96 .
![]() | |
2. |
许情,吕敏,邓虹霄,胡驰,向平,陈航. 机器学习在合成大麻素识别鉴定中的应用进展. 中国药科大学学报. 2024(03): 316-325 .
![]() |