Citation: | PEI Xin, LI Guideng, CHU Weihua. Progress of proximity labeling technology in membrane protein interaction[J]. J China Pharm Univ, 2024, 55(2): 158 − 166. DOI: 10.11665/j.issn.1000-5048.2023041303 |
Membrane proteins, which play a critical role in various life processes, particularly in regulating cell-cell contact and signal transduction, are closely linked to cell differentiation and maturation. Therefore, it is of great theoretical and practical significance to develop a variety of methods to thoroughly explore the interactions between membrane proteins. In addition to traditional techniques such as immunoprecipitation, newly developed proximity labeling (PL) techniques have gradually become important means to study membrane protein interaction. PL methods are based on engineered enzymes fused with bait protein to catalyze small molecules, label neighboring target proteins, and detect the interactions by flow cytometry, mass spectrometry, confocal microscopic imaging, etc. This paper focuses on the recent developments in PL techniques for studying membrane protein interactions, with a prospect of the potential future directions for research in this area.
[1] |
Nakamura K, Omori T, Ishikawa T. Shear-induced migration of a transmembrane protein within a vesicle[J]. Biophys J, 2019, 116(8): 1483-1494. doi: 10.1016/j.bpj.2019.03.017
|
[2] |
Guo L, Wang SF, Li MY, et al. Accurate classification of membrane protein types based on sequence and evolutionary information using deep learning[J]. BMC Bioinformatics, 2019, 20(Suppl 25): 700.
|
[3] |
Suades A, Alcaraz A, Cruz E, et al. Structural biology workflow for the expression and characterization of functional human sodium glucose transporter type 1 in Pichia pastoris[J]. Sci Rep, 2019, 9(1): 1203. doi: 10.1038/s41598-018-37445-2
|
[4] |
Simon F, Bork K, Gnanapragassam VS, et al. Increased expression of immature mannose-containing glycoproteins and sialic acid in aged mouse brains[J]. Int J Mol Sci, 2019, 20(24): 6118. doi: 10.3390/ijms20246118
|
[5] |
Krawczyk M, Pastuch-Gawołek G, Hadasik A, et al. 8-Hydroxyquinoline glycoconjugates containing sulfur at the sugar anomeric position-synthesis and preliminary evaluation of their cytotoxicity[J]. Molecules, 2020, 25(18): 4174. doi: 10.3390/molecules25184174
|
[6] |
Cho KF, Branon TC, Rajeev S, et al. Split-TurboID enables contact-dependent proximity labeling in cells[J]. Proc Natl Acad Sci U S A, 2020, 117(22): 12143-12154. doi: 10.1073/pnas.1919528117
|
[7] |
Heenan PR, Yu H, Siewny MGW, et al. Improved free-energy landscape reconstruction of bacteriorhodopsin highlights local variations in unfolding energy[J]. J Chem Phy, 2018;148(12): 123313.
|
[8] |
Roel-Touris J, Jiménez-García B, Bonvin AMJJ. Integrative modeling of membrane-associated protein assemblies[J]. Nat Commun, 2020, 11(1): 6210. doi: 10.1038/s41467-020-20076-5
|
[9] |
Xu HJ, Zhang JR, Zhou YJ, et al. Mechanistic insights into membrane protein clustering revealed by visualizing EGFR secretion[J]. Research, 2022, 2022: 9835035.
|
[10] |
Kondrashov OV, Kuzmin PI, Akimov SA. Hydrophobic mismatch controls the mode of membrane-mediated interactions of transmembrane peptides[J]. Membranes, 2022, 12(1): 89. doi: 10.3390/membranes12010089
|
[11] |
Xue MM, Cheng LS, Faustino I, et al. Molecular mechanism of lipid nanodisk formation by styrene-maleic acid copolymers[J]. Biophys J, 2018, 115(3): 494-502. doi: 10.1016/j.bpj.2018.06.018
|
[12] |
Jenkins E, Santos AM, O'Brien-Ball C, et al. Reconstitution of immune cell interactions in free-standing membranes[J]. J Cell Sci, 2018, 132(4): jcs219709.
|
[13] |
Schenkel M, Treff A, Deber CM, et al. Heat treatment of thioredoxin fusions increases the purity of α-helical transmembrane protein constructs[J]. Protein Sci, 2021, 30(9): 1974-1982. doi: 10.1002/pro.4150
|
[14] |
Anwar T, Samudrala G. Bioinformatics analysis and functional prediction of transmembrane proteins in Entamoeba histolytica[J]. Genes, 2018, 9(10): 499. doi: 10.3390/genes9100499
|
[15] |
Shi P, Li D, Chen HW, et al. In situ 19F NMR studies of an E. coli membrane protein[J]. Protein Sci, 2012, 21(4): 596-600.
|
[16] |
King C, Stoneman M, Raicu V, et al. Fully quantified spectral imaging reveals in vivo membrane protein interactions[J]. Integr Biol, 2016, 8(2): 216-229. doi: 10.1039/c5ib00202h
|
[17] |
Burckhardt CJ, Minna JD, Danuser G. Co-immunoprecipitation and semi-quantitative immunoblotting for the analysis of protein-protein interactions[J]. STAR Protoc, 2021, 2 (3): 100644.
|
[18] |
Zhou Y, Hong W, Lu L. Imaging beads-retained prey assay for rapid and quantitative protein-protein interaction[J]. PLoS One, 2013, 8 (3): e59727.
|
[19] |
Boeri Erba E, Petosa C. The emerging role of native mass spectrometry in characterizing the structure and dynamics of macromolecular complexes[J]. Protein Sci, 2015, 24 (8): 1176-1192.
|
[20] |
Moreira GMSG, Köllner SMS, Helmsing S, et al. Pyruvate dehydrogenase complex-enzyme 2, a new target for Listeria spp. detection identified using combined phage display technologies[J]. Sci Rep, 2020, 10 (1): 15267.
|
[21] |
Li QP, Wang S, Gou JY. A split ubiquitin system to reveal topology and released peptides of membrane proteins[J]. BMC Biotechnol, 2017, 17(1): 69. doi: 10.1186/s12896-017-0391-0
|
[22] |
Beghetto E, Gargano N. Lambda-display: a powerful tool for antigen discovery[J]. Molecules, 2011, 16(4): 3089-3105. doi: 10.3390/molecules16043089
|
[23] |
Beghetto E, Gargano N, Ricci S, et al. Discovery of novel Streptococcus pneumoniae antigens by screening a whole-genome lambda-display library[J]. FEMS Microbiol Lett, 2006, 262(1): 14-21. doi: 10.1111/j.1574-6968.2006.00360.x
|
[24] |
Wu YT, Liu B, Liu ZW, et al. Construction, characterization, and application of a nonpathogenic virus-like model for SARS-CoV-2 nucleocapsid protein by phage display[J]. Toxins, 2022, 14(10): 683. doi: 10.3390/toxins14100683
|
[25] |
Lu JC, Ge YM, Xu YH, et al. Screening of sperm antigen epitopes by phage display technique and its preliminary clinical application[J]. Basic Clin Androl, 2022, 32(1): 22. doi: 10.1186/s12610-022-00172-w
|
[26] |
Liu TT, Li BJ, Jiang YY, et al. Screening and identification of novel specific markers of breast cancer stem cells[J]. Oncol Lett, 2019, 18(3): 2262-2269.
|
[27] |
Jaroszewicz W, Morcinek-Orłowska J, Pierzynowska K, et al. Phage display and other peptide display technologies[J]. FEMS Microbiol Rev, 2022, 46(2): fuab052. doi: 10.1093/femsre/fuab052
|
[28] |
Kajiwara K, Aoki W, Ueda M. Evaluation of the yeast surface display system for screening of functional nanobodies[J]. AMB Express, 2020, 10(1): 51. doi: 10.1186/s13568-020-00983-y
|
[29] |
Zhou J, Wang Z, Wang X, et al. Dicot-specific ATG8-interacting ATI3 proteins interact with conserved UBAC2 proteins and play critical roles in plant stress responses[J]. Autophagy, 2018,14(3): 487-504.
|
[30] |
Wang YW, Zhang S, Tang Y, et al. Screening of duck tembusu virus NS3 interacting host proteins and identification of its specific interplay domains[J]. Viruses, 2019, 11(8): 740. doi: 10.3390/v11080740
|
[31] |
Qin W, Cho KF, Cavanagh PE, et al. Deciphering molecular interactions by proximity labeling[J]. Nat Methods, 2021, 18(2): 133-143. doi: 10.1038/s41592-020-01010-5
|
[32] |
Mannix KM, Starble RM, Kaufman RS, et al. Proximity labeling reveals novel interactomes in live Drosophila tissue[J]. Development, 2019, 146(14): dev176644.
|
[33] |
Olson MG, Widner RE, Jorgenson LM, et al. Proximity labeling to map host-pathogen interactions at the membrane of a bacterium-containing vacuole in Chlamydia trachomatis-infected human cells[J]. Infect Immun, 2019, 87(11): e00537-e00519.
|
[34] |
Dong XD, Lim TK, Lin QS, et al. Basal body protein TbSAF1 is required for microtubule quartet anchorage to the basal bodies in Trypanosoma brucei[J]. mBio, 2020, 11(3): e00668-e00620.
|
[35] |
Hémono M, Haller A, Chicher J, et al. The interactome of CLUH reveals its association to SPAG5 and its co-translational proximity to mitochondrial proteins[J]. BMC Biol, 2022, 20(1): 13. doi: 10.1186/s12915-021-01213-y
|
[36] |
Ramanathan M, Majzoub K, Rao DS, et al. RNA-protein interaction detection in living cells[J]. Nat Methods, 2018, 15(3): 207-212. doi: 10.1038/nmeth.4601
|
[37] |
Branon TC, Bosch JA, Sanchez AD, et al. Efficient proximity labeling in living cells and organisms with TurboID[J]. Nat Biotechnol, 2018, 36(9): 880-887. doi: 10.1038/nbt.4201
|
[38] |
Kotani N, Nakano T, Kuwahara R. Host cell membrane proteins located near SARS-CoV-2 spike protein attachment sites are identified using proximity labeling and proteomic analysis[J]. J Biol Chem, 2022, 298 (11): 102500.
|
[39] |
Schaack GA, Sullivan OM, Mehle A. Identifying Protein-Protein Interactions by Proximity Biotinylation with AirID and splitAirID[J]. Curr Protoc, 2023, 3 (3): e702.
|
[40] |
Zafra F, Piniella D. Proximity labeling methods for proteomic analysis of membrane proteins[J]. J Proteomics, 2022,264: 104620.
|
[41] |
McDevitt RI, Ruaux CG, Baltzer WI. Influence of transfusion technique on survival of autologous red blood cells in the dog[J]. J Vet Emerg Crit Care, 2011, 21(3): 209-216. doi: 10.1111/j.1476-4431.2011.00634.x
|
[42] |
Li MY, Peng F, Wang GQ, et al. Coupling of cell surface biotinylation and SILAC-based quantitative proteomics identified myoferlin as a potential therapeutic target for nasopharyngeal carcinoma metastasis[J]. Front Cell Dev Biol, 2021, 9: 621810. doi: 10.3389/fcell.2021.621810
|
[43] |
Kumar A, Salemi M, Bhullar R, et al. Proximity biotin labeling reveals Kaposi’s sarcoma-associated herpesvirus interferon regulatory factor networks[J]. J Virol, 2021, 95(9): e02049-e02020.
|
[44] |
May DG, Scott KL, Campos AR, et al. Comparative application of BioID and TurboID for protein-proximity biotinylation[J]. Cells, 2020, 9(5): 1070. doi: 10.3390/cells9051070
|
[45] |
Chojnowski A, Sobota RM, Ong PF, et al. 2C-BioID: an advanced two component BioID system for precision mapping of protein interactomes[J]. iScience, 2018, 10: 40-52. doi: 10.1016/j.isci.2018.11.023
|
[46] |
Ke M, Yuan X, He A, et al. Spatiotemporal profiling of cytosolic signaling complexes in living cells by selective proximity proteomics[J]. Nat Commun, 2021, 12(1): 71. doi: 10.1038/s41467-020-20367-x
|
[47] |
Zada A, Khan I, Zhang M, et al. AirID-based proximity labeling for protein-protein interaction in plants[J]. J Vis Exp, 2022(187): 10.3791/64428.
|
[48] |
May DG, Roux KJ. BioID: a method to generate a history of protein associations[J]. Methods Mol Biol, 2019, 2008: 83-95.
|
[49] |
Hung V, Zou P, Rhee HW, et al. Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging[J]. Mol Cell, 2014, 55(2): 332-341. doi: 10.1016/j.molcel.2014.06.003
|
[50] |
Kang MG, Rhee HW. Molecular spatiomics by proximity labeling[J]. Acc Chem Res, 2022, 55(10): 1411-1422. doi: 10.1021/acs.accounts.2c00061
|
[51] |
Yang W, Huang ZX, Xu ZF, et al. Selective and nongenetic peroxidase tag of membrane protein: a nucleic acid tool for proximity labeling[J]. Anal Chem, 2022, 94(2): 1101-1107. doi: 10.1021/acs.analchem.1c04148
|
[52] |
Liu Q, Zheng J, Sun WP, et al. A proximity-tagging system to identify membrane protein-protein interactions[J]. Nat Methods, 2018, 15(9): 715-722. doi: 10.1038/s41592-018-0100-5
|
[53] |
Lee M, Lee YH, Song J, et al. Deep-learning-based three-dimensional label-free tracking and analysis of immunological synapses of CAR-T cells[J]. eLife, 2020, 9: e49023. doi: 10.7554/eLife.49023
|
[54] |
Pasqual G, Chudnovskiy A, Tas JMJ, et al. Monitoring T cell-dendritic cell interactions in vivo by intercellular enzymatic labelling[J]. Nature, 2018, 553(7689): 496-500. doi: 10.1038/nature25442
|
[55] |
Wang X, Chen JL, Otting G, et al. Conversion of an amide to a high-energy thioester by Staphylococcus aureus sortase A is powered by variable binding affinity for calcium[J]. Sci Rep, 2018, 8(1): 16371. doi: 10.1038/s41598-018-34752-6
|
[56] |
Schmidt M, Toplak A, Quaedflieg PJLM, et al. Enzyme-catalyzed peptide cyclization[J]. Drug Discov Today Technol, 2017, 26: 11-16. doi: 10.1016/j.ddtec.2017.11.007
|
[57] |
Schmohl L, Schwarzer D. Sortase-mediated ligations for the site-specific modification of proteins[J]. Curr Opin Chem Biol, 2014, 22: 122-128. doi: 10.1016/j.cbpa.2014.09.020
|
[58] |
Liu ZL, Li JP, Chen MK, et al. Detecting tumor antigen-specific T cells via interaction-dependent fucosyl-biotinylation[J]. Cell, 2020, 183(4): 1117-1133. e19.
|
[59] |
Tamura T, Ueda T, Goto T, et al. Rapid labelling and covalent inhibition of intracellular native proteins using ligand-directed N-acyl-N-alkyl sulfonamide[J]. Nat Commun, 2018, 9(1): 1870. doi: 10.1038/s41467-018-04343-0
|
[60] |
Lee YH, Yu E, Park CM. Programmable site-selective labeling of oligonucleotides based on carbene catalysis[J]. Nat Commun, 2021, 12(1): 1681. doi: 10.1038/s41467-021-21839-4
|
[61] |
Li QY, Xie YX, Rice R, et al. A proximity labeling method for protein-protein interactions on cell membrane[J]. Chem Sci, 2022, 13(20): 6028-6038. doi: 10.1039/D1SC06898A
|
[1] | ZHANG Zhixing, DENG Hua, TANG Yun. Applications and challenges of artificial intelligence in the development of anticancer peptides[J]. Journal of China Pharmaceutical University, 2024, 55(3): 347-356. DOI: 10.11665/j.issn.1000-5048.2024040201 |
[2] | HU Zi’ang, GAO Liming, YU Wenying. Advances in the application of artificial intelligence in nucleic acid drug development[J]. Journal of China Pharmaceutical University, 2024, 55(3): 335-346. DOI: 10.11665/j.issn.1000-5048.2024033101 |
[3] | ZENG Hao, WU Guozhen, ZOU Wuxin, WANG Zhe, SONG Jianfei, SHI Hui, WANG Xiaojian, HOU Tingjun, DENG Yafeng. Optimization of Menin inhibitors based on artificial intelligence-driven molecular factory technology[J]. Journal of China Pharmaceutical University, 2024, 55(3): 326-334. DOI: 10.11665/j.issn.1000-5048.2024040904 |
[4] | CHEN Baiyu, LYU Lunan, XU Xiaodi, ZHANG Ying, LI Wei, FU Wei. Reflections on improving drug success rates with AIDD and CADD[J]. Journal of China Pharmaceutical University, 2024, 55(3): 284-294. DOI: 10.11665/j.issn.1000-5048.2024011302 |
[5] | PU Chengtao, GU Lingqian, CHEN Xingye, ZHANG Yanmin. Prediction of human intestinal absorption properties based on artificial intelligence[J]. Journal of China Pharmaceutical University, 2023, 54(3): 355-362. DOI: 10.11665/j.issn.1000-5048.2023032102 |
[6] | XUE Feng, FENG Shuo, LI Jing. Application and prospect of artificial intelligence in antimicrobial peptides screening[J]. Journal of China Pharmaceutical University, 2023, 54(3): 314-322. DOI: 10.11665/j.issn.1000-5048.2023030901 |
[7] | GU Zhihao, GUO Wenhao, YAO Hequan, LI Xuanyi, LIN Kejiang. Research progress of the screening and generation of lead compounds based on artificial intelligence model[J]. Journal of China Pharmaceutical University, 2023, 54(3): 294-304. DOI: 10.11665/j.issn.1000-5048.2023042201 |
[8] | YU Zehao, ZHANG Leiming, ZHANG Mengna, DAI Zhiqi, PENG Chengbin, ZHENG Siming. Artificial intelligence-based drug development: current progress and future challenges[J]. Journal of China Pharmaceutical University, 2023, 54(3): 282-293. DOI: 10.11665/j.issn.1000-5048.2023041003 |
[9] | WANG Chao, XIAO Fu, LI Miaozhu, PAN Ying, DING Xiao, REN Feng, ZHAVORONKOV Alex, WANG Yazhou. Application progress of artificial intelligence in the screening and identification of drug targets[J]. Journal of China Pharmaceutical University, 2023, 54(3): 269-281. DOI: 10.11665/j.issn.1000-5048.2023041102 |
[10] | YAN Fangrong. Application and advance of artificial intelligence in biomedical field[J]. Journal of China Pharmaceutical University, 2023, 54(3): 263-268. DOI: 10.11665/j.issn.1000-5048.2023030304 |