Citation: | WANG Jiang, ZHAO Xueyan, FANG Weirong. Research progress in STAT3/Th17 cells and Sjögren syndrome[J]. J China Pharm Univ, 2024, 55(3): 420 − 428. DOI: 10.11665/j.issn.1000-5048.2023041805 |
Signal transducer and activator of transcription 3 (STAT3) is an intracellular signaling factor that plays a critical role in various cellular processes, including the growth, differentiation, apoptosis, and immune response of cells. Aberrant activation of T helper cell 17 (Th17) is closely associated with the morbidity and progress of various autoimmune diseases. STAT3 participates in the pathogenesis of Sjögren syndrome by inducing excessive proliferation and abnormal differentiation of Th17 cells and affecting lymphocyte infiltration into exocrine glands. Therefore, targeting the STAT3 signaling pathway represents a potential novel therapeutic approach for the treatment of Sjögren syndrome. This review summarizes the research of STAT3 in the pathogenesis and progression of Sjögren syndrome through regulating Th17 cells, focusing on current inhibitors targeting the STAT3 signaling pathway as potential therapeutic targets for Sjögren syndrome.
[1] |
Qin BD, Wang JQ, Yang ZX, et al. Epidemiology of primary Sjögren’s syndrome: a systematic review and meta-analysis[J]. Ann Rheum Dis, 2015, 74(11): 1983-1989. doi: 10.1136/annrheumdis-2014-205375
|
[2] |
Brito-Zerón P, Retamozo S, Ramos-Casals M. Sjögren syndrome[J]. Med Clin, 2023, 160(4): 163-171. doi: 10.1016/j.medcli.2022.10.007
|
[3] |
Lal S. Primary Sjögren’s syndrome[J]. N Engl J Med, 2018, 379(1): 96-97. doi: 10.1056/NEJMc1804598
|
[4] |
Hillmer EJ, Zhang HY, Li HS, et al. STAT3 signaling in immunity[J]. Cytokine Growth Factor Rev, 2016, 31: 1-15. doi: 10.1016/j.cytogfr.2016.05.001
|
[5] |
Zhao YX, Luan HF, Jiang H, et al. Gegen Qinlian Decoction relieved DSS-induced ulcerative colitis in mice by modulating Th17/Treg cell homeostasis via suppressing IL-6/JAK2/STAT3 signaling[J]. Phytomedicine, 2021, 84: 153519. doi: 10.1016/j.phymed.2021.153519
|
[6] |
Zhang X, Zhang X, Qiu C, et al. The imbalance of Th17/Treg via STAT3 activation modulates cognitive impairment in P. gingivalis LPS-induced periodontitis mice[J]. J Leukoc Biol, 2021, 110(3): 511-524. doi: 10.1002/JLB.3MA0521-742RRR
|
[7] |
Hajimoradi M, Rezalotfi A, Esmaeilnejad-Ahranjani P, et al. STAT3 inactivation suppresses stemness properties in gastric cancer stem cells and promotes Th17 in Treg/Th17 balance[J]. Int Immunopharmacol, 2022, 111: 109048. doi: 10.1016/j.intimp.2022.109048
|
[8] |
Rivière E, Pascaud J, Tchitchek N, et al. Salivary gland epithelial cells from patients with Sjögren’s syndrome induce B-lymphocyte survival and activation[J]. Ann Rheum Dis, 2020, 79(11): 1468-1477. doi: 10.1136/annrheumdis-2019-216588
|
[9] |
Du WH, Han M, Zhu XX, et al. The multiple roles of B cells in the pathogenesis of Sjögren’s syndrome[J]. Front Immunol, 2021, 12: 684999. doi: 10.3389/fimmu.2021.684999
|
[10] |
Fessler J, Fasching P, Raicht A, et al. Lymphopenia in primary Sjögren’s syndrome is associated with premature aging of naïve CD4+ T cells[J]. Rheumatology, 2021, 60(2): 588-597. doi: 10.1093/rheumatology/keaa105
|
[11] |
Chen WQ, Yang F, Xu GH, et al. Follicular helper T cells and follicular regulatory T cells in the immunopathology of primary Sjögren’s syndrome[J]. J Leukoc Biol, 2021, 109(2): 437-447. doi: 10.1002/JLB.5MR1020-057RR
|
[12] |
Pontarini E, Verstappen GM, Grigoriadou S, et al. Blocking T cell co-stimulation in primary Sjögren’s syndrome: rationale, clinical efficacy and modulation of peripheral and salivary gland biomarkers[J]. Clin Exp Rheumatol, 2020, 38(4): 222-227.
|
[13] |
Yao Y, Ma JF, Chang C, et al. Immunobiology of T cells in Sjögren’s syndrome[J]. Clin Rev Allergy Immunol, 2021, 60(1): 111-131. doi: 10.1007/s12016-020-08793-7
|
[14] |
Rafael-Vidal C, Pérez N, Altabás I, et al. Blocking IL-17: a promising strategy in the treatment of systemic rheumatic diseases[J]. Int J Mol Sci, 2020, 21(19): 7100. doi: 10.3390/ijms21197100
|
[15] |
Shao LH, Li M, Zhang BY, et al. Bacterial dysbiosis incites Th17 cell revolt in irradiated gut[J]. Biomedecine Pharmacother, 2020, 131: 110674. doi: 10.1016/j.biopha.2020.110674
|
[16] |
Zhu JF, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (*)[J]. Annu Rev Immunol, 2010, 28: 445-489. doi: 10.1146/annurev-immunol-030409-101212
|
[17] |
Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells[J]. Cell, 2006, 126(6): 1121-1133. doi: 10.1016/j.cell.2006.07.035
|
[18] |
Yasuda K, Takeuchi Y, Hirota K. The pathogenicity of Th17 cells in autoimmune diseases[J]. Semin Immunopathol, 2019, 41(3): 283-297. doi: 10.1007/s00281-019-00733-8
|
[19] |
Chen ZJ, Lin F, Gao YY, et al. FOXP3 and RORγt: transcriptional regulation of treg and Th17[J]. Int Immunopharmacol, 2011, 11(5): 536-542. doi: 10.1016/j.intimp.2010.11.008
|
[20] |
Psianou K, Panagoulias I, Papanastasiou AD, et al. Clinical and immunological parameters of Sjögren’s syndrome[J]. Autoimmun Rev, 2018, 17(10): 1053-1064. doi: 10.1016/j.autrev.2018.05.005
|
[21] |
Bunte K, Beikler T. Th17 cells and the IL-23/IL-17 axis in the pathogenesis of periodontitis and immune-mediated inflammatory diseases[J]. Int J Mol Sci, 2019, 20(14): 3394. doi: 10.3390/ijms20143394
|
[22] |
Ogawa Y, Takeuchi T, Tsubota K. Autoimmune epithelitis and chronic inflammation in Sjögren’s syndrome-related dry eye disease[J]. Int J Mol Sci, 2021, 22(21): 11820. doi: 10.3390/ijms222111820
|
[23] |
Loureiro-Amigo J, Franco-Jarava C, Perurena-Prieto J, et al. Serum CXCL13, BAFF, IL-21 and IL-22 levels are related to disease activity and lymphocyte profile in primary Sjögren’s syndrome[J]. Clin Exp Rheumatol, 2021, 39(6): 131-139. doi: 10.55563/clinexprheumatol/fp741f
|
[24] |
Reksten TR, Jonsson MV, Szyszko EA, et al. Cytokine and autoantibody profiling related to histopathological features in primary Sjögren’s syndrome[J]. Rheumatology, 2009, 48(9): 1102-1106. doi: 10.1093/rheumatology/kep149
|
[25] |
Verstappen GM, Corneth OBJ, Bootsma H, et al. Th17 cells in primary Sjögren’s syndrome: Pathogenicity and plasticity[J]. J Autoimmun, 2018, 87: 16-25. doi: 10.1016/j.jaut.2017.11.003
|
[26] |
Liu G, Wang ZY, Li X, et al. Total glucosides of paeony (TGP) alleviates constipation and intestinal inflammation in mice induced by Sjögren’s syndrome[J]. J Ethnopharmacol, 2020, 260: 113056. doi: 10.1016/j.jep.2020.113056
|
[27] |
Li BB, Liu G, Liu R, et al. Total glucosides of paeony (TGP) alleviates Sjögren’s syndrome through inhibiting inflammatory responses in mice[J]. Phytomedicine, 2020, 71: 153203. doi: 10.1016/j.phymed.2020.153203
|
[28] |
Li BB, He SC, Liu R, et al. Total glucosides of paeony attenuates animal psoriasis induced inflammatory response through inhibiting STAT1 and STAT3 phosphorylation[J]. J Ethnopharmacol, 2019, 243: 112121. doi: 10.1016/j.jep.2019.112121
|
[29] |
Song XY, Gao HC, Qian YC. Th17 differentiation and their pro-inflammation function[J]. Adv Exp Med Biol, 2014, 841: 99-151.
|
[30] |
Verhoeven Y, Tilborghs S, Jacobs J, et al. The potential and controversy of targeting STAT family members in cancer[J]. Semin Cancer Biol, 2020, 60: 41-56. doi: 10.1016/j.semcancer.2019.10.002
|
[31] |
Nobel YR, Stier K, Krishnareddy S. STAT signaling in the intestine[M]. Signal Transduction in Cancer and Immunity. Amsterdam: Elsevier, 2021: 1-20.
|
[32] |
Myers SA, Gottschalk RA. Mechanisms encoding STAT functional diversity for context-specific inflammatory responses[J]. Curr Opin Immunol, 2022, 74: 150-155. doi: 10.1016/j.coi.2022.01.001
|
[33] |
Damasceno LEA, Prado DS, Veras FP, et al. PKM2 promotes Th17 cell differentiation and autoimmune inflammation by fine-tuning STAT3 activation[J]. J Exp Med, 2020, 217(10): e20190613. doi: 10.1084/jem.20190613
|
[34] |
V de Simone, E Franzè, G Ronchetti, et al. Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth[J]. Oncogene, 2015, 34(27): 3493-3503. doi: 10.1038/onc.2014.286
|
[35] |
Xu H, Yu AL, Zhao DP, et al. Ursolic acid inhibits Th17 cell differentiation via STAT3/RORγt pathway and suppresses Schwann cell-mediated Th17 cell migration by reducing CXCL9/10 expression[J]. Innate Immun, 2022, 28(5): 155-163. doi: 10.1177/17534259221094559
|
[36] |
Zhang MM, Zhou LX, Xu YJ, et al. A STAT3 palmitoylation cycle promotes TH17 differentiation and colitis[J]. Nature, 2020, 586(7829): 434-439. doi: 10.1038/s41586-020-2799-2
|
[37] |
Wu JZ, Ge DD, Zhong TL, et al. IRF4 and STAT3 activities are associated with the imbalanced differentiation of T-cells in responses to inhalable particulate matters[J]. Respir Res, 2020, 21(1): 123. doi: 10.1186/s12931-020-01368-2
|
[38] |
Ciofani M, Madar A, Galan C, et al. A validated regulatory network for Th17 cell specification[J]. Cell, 2012, 151(2): 289-303. doi: 10.1016/j.cell.2012.09.016
|
[39] |
Yang Y, Shi GN, Wu X, et al. Quercetin impedes Th17 cell differentiation to mitigate arthritis involving PPARγ-driven transactivation of SOCS3 and redistribution corepressor SMRT from PPARγ to STAT3[J]. Mol Nutr Food Res, 2022, 66(12): e2100826. doi: 10.1002/mnfr.202100826
|
[40] |
Chang LH, Kong AB, Guo Y, et al. Quercetin ameliorates salivary gland apoptosis and inflammation in primary Sjögren’s syndrome through regulation of the leptin/OB-R signaling[J]. Drug Dev Res, 2022, 83(6): 1351-1361. doi: 10.1002/ddr.21964
|
[41] |
Rui K, Hong Y, Zhu QG, et al. Olfactory ecto-mesenchymal stem cell-derived exosomes ameliorate murine Sjögren’s syndrome by modulating the function of myeloid-derived suppressor cells[J]. Cell Mol Immunol, 2021, 18(2): 440-451. doi: 10.1038/s41423-020-00587-3
|
[42] |
He CM, Yang YL, Chen ZL, et al. EZH2 promotes T follicular helper cell differentiation through enhancing STAT3 phosphorylation in patients with primary Sjögren’s syndrome[J]. Front Immunol, 2022, 13: 922871. doi: 10.3389/fimmu.2022.922871
|
[43] |
Vartoukian SR, Tilakaratne WM, Seoudi N, et al. Dysregulation of the suppressor of cytokine signalling 3-signal transducer and activator of transcription-3 pathway in the aetiopathogenesis of Sjögren’s syndrome[J]. Clin Exp Immunol, 2014, 177(3): 618-629. doi: 10.1111/cei.12377
|
[44] |
Lodi L, Faletti LE, Maccari ME, et al. STAT3-confusion-of-function: beyond the loss and gain dualism[J]. J Allergy Clin Immunol, 2022, 150(5): 1237-1241. e3.
|
[45] |
Luo J, Ming BX, Zhang C, et al. IL-2 inhibition of Th17 generation rather than induction of treg cells is impaired in primary Sjögren’s syndrome patients[J]. Front Immunol, 2018, 9: 1755. doi: 10.3389/fimmu.2018.01755
|
[46] |
Okuma A, Hoshino K, Ohba T, et al. Enhanced apoptosis by disruption of the STAT3-IκB-ζ signaling pathway in epithelial cells induces Sjögren’s syndrome-like autoimmune disease[J]. Immunity, 2013, 38(3): 450-460. doi: 10.1016/j.immuni.2012.11.016
|
[47] |
Gliozzi M, Greenwell-Wild T, Jin WW, et al. A link between interferon and augmented plasmin generation in exocrine gland damage in Sjögren’s syndrome[J]. J Autoimmun, 2013, 40: 122-133. doi: 10.1016/j.jaut.2012.09.003
|
[48] |
Liu J. Expression of cyclooxygenase-2, STAT signalling pathway in tumorigenesis of esophageal carcinoma and the effect of nimesulide on human esophageal carcinoma cells[D]. Shijiazhuang: Hebei Medical University, 2006.
|
[49] |
Gottenberg JE, Ravaud P, Puéchal X, et al. Effects of hydroxychloroquine on symptomatic improvement in primary Sjögren syndrome: the JOQUER randomized clinical trial[J]. JAMA, 2014, 312(3): 249-258. doi: 10.1001/jama.2014.7682
|
[50] |
Mariette X, Barone F, Baldini C, et al. A randomized, phase II study of sequential belimumab and rituximab in primary Sjögren’s syndrome[J]. JCI Insight, 2022, 7(23): e163030. doi: 10.1172/jci.insight.163030
|
[51] |
Grosskreutz CL, Hockey HU, Serra D, et al. Dry eye signs and symptoms persist during systemic neutralization of IL-1β by canakinumab or IL-17A by secukinumab[J]. Cornea, 2015, 34(12): 1551-1556. doi: 10.1097/ICO.0000000000000627
|
[52] |
Gandolfo S, Ciccia F. JAK/STAT pathway targeting in primary Sjögren syndrome[J]. Rheumatol Immunol Res, 2022, 3(3): 95-102. doi: 10.2478/rir-2022-0017
|
[53] |
Luo YM, Alexander M, Gadina M, et al. JAK-STAT signaling in human disease: from genetic syndromes to clinical inhibition[J]. J Allergy Clin Immunol, 2021, 148(4): 911-925. doi: 10.1016/j.jaci.2021.08.004
|
[54] |
Wan NY, Jiang CH, Gao M, et al. Paeoniflorin inhibits programmed cell death-1-ligand 1 expression in HepG2 cells by regulating JAK /STAT3 signal pathway[J]. J China Pharm Univ(中国药科大学学报), 2019, 50(2): 213-221.
|
[55] |
Elmariah SB, Smith JS, Merola JF. JAK in the[black]box: a dermatology perspective on systemic JAK inhibitor safety[J]. Am J Clin Dermatol, 2022, 23(4): 427-431. doi: 10.1007/s40257-022-00701-3
|
[56] |
Busker S, Page B, Arnér ESJ. To inhibit TrxR1 is to inactivate STAT3-Inhibition of TrxR1 enzymatic function by STAT3 small molecule inhibitors[J]. Redox Biol, 2020, 36: 101646. doi: 10.1016/j.redox.2020.101646
|
[57] |
Bai W, Liu HL, Dou L, et al. Pilot study of baricitinib for active Sjögren’s syndrome[J]. Ann Rheum Dis, 2022, 81(7): 1050-1052. doi: 10.1136/annrheumdis-2021-222053
|
[58] |
Bai W, Yang F, Xu HJ, et al. A multi-center, open-label, randomized study to explore efficacy and safety of baricitinib in active primary Sjögren’s syndrome patients[J]. Trials, 2023, 24(1): 112. doi: 10.1186/s13063-023-07087-5
|
[59] |
Lee J, Lee J, Kwok SK, et al. JAK-1 inhibition suppresses interferon-induced BAFF production in human salivary gland: potential therapeutic strategy for primary sjögren’s syndrome[J]. Arthritis Rheumatol, 2018, 70(12): 2057-2066. doi: 10.1002/art.40589
|
[60] |
Petitdemange A, Blaess J, Sibilia J, et al. Shared development of targeted therapies among autoimmune and inflammatory diseases: a systematic repurposing analysis[J]. Ther Adv Musculoskelet Dis, 2020, 12: 1759720X20969261.
|
[1] | REN Weijie, CEN Lifang, ZOU Yi. Research progress of Bruton's tyrosine kinase (BTK) inhibitors in the treatment of inflammatory and immune-mediated diseases[J]. Journal of China Pharmaceutical University, 2024, 55(1): 63-72. DOI: 10.11665/j.issn.1000-5048.2023121103 |
[2] | YANG Qian, WANG Xiaojian. Research progress of sphingosine kinase 1 inhibitors[J]. Journal of China Pharmaceutical University, 2021, 52(6): 759-768. DOI: 10.11665/j.issn.1000-5048.20210615 |
[3] | BU Hong, ZHOU Jinpei, ZHANG Huibin. Research progress of mitogen-activated protein kinase interacting kinases inhibitors in tumor immunotherapy[J]. Journal of China Pharmaceutical University, 2021, 52(4): 410-421. DOI: 10.11665/j.issn.1000-5048.20210403 |
[4] | ZHAO Limeng, WANG Shuzhen. Therapeutic applications of small molecule kinase inhibitors in liver fibrosis[J]. Journal of China Pharmaceutical University, 2018, 49(2): 147-157. DOI: 10.11665/j.issn.1000-5048.20180203 |
[5] | YUAN Zhong, CHEN Zhuo, LI Qianbin, HU Gaoyun. Advances in research of protein tyrosine phosphatase 1B and its inhibitors[J]. Journal of China Pharmaceutical University, 2018, 49(1): 1-9. DOI: 10.11665/j.issn.1000-5048.20180101 |
[6] | LI Tonghui, GUO Hao, LU Tao, WANG Yue, LU Shuai, TANG Weifang. Advances in the research of FLT3 inhibitors for acute myeloid leukemia[J]. Journal of China Pharmaceutical University, 2015, 46(2): 153-161. DOI: 10.11665/j.issn.1000-5048.20150203 |
[7] | ZHANG Yuan, CHENG Yulan, ZHOU Jinpei, ZHANG Huibin. Advances on receptor tyrosine kinase inhibitors taking c-Met as anti-tumor target[J]. Journal of China Pharmaceutical University, 2015, 46(1): 16-27. DOI: 10.11665/j.issn.1000-5048.20150102 |
[8] | HUANG Fei, ZHU Haijing, ZHOU Xiang, LU Tao, JIAO Yu, TANG Weifang. Progress of Bruton′s tyrosine kinase(BTK)and its inhibitors[J]. Journal of China Pharmaceutical University, 2014, 45(6): 617-624. DOI: 10.11665/j.issn.1000-5048.20140602 |
[9] | ZHU Yaqi, YAN Fang, DI Bin, YAN Jia, LI Jiachang, LI Yunman. Inhibiting effect of emodin on adriamycin-resistance of K562/ADM cell line[J]. Journal of China Pharmaceutical University, 2014, 45(4): 462-468. DOI: 10.11665/j.issn.1000-5048.20140414 |
[10] | DONG Gaochao, ZHOU Xiang, TANG Weifang, LU Tao. Advances in the research and development of B-Raf inhibitors[J]. Journal of China Pharmaceutical University, 2014, 45(1): 1-9. DOI: 10.11665/j.issn.1000-5048.20140101 |