Citation: | GU Zhihao, GUO Wenhao, YAO Hequan, LI Xuanyi, LIN Kejiang. Research progress of the screening and generation of lead compounds based on artificial intelligence model[J]. Journal of China Pharmaceutical University, 2023, 54(3): 294-304. DOI: 10.11665/j.issn.1000-5048.2023042201 |
[1] |
Smietana K, Siatkowski M, M?ller M. Trends in clinical success rates[J]. Nat Rev Drug Discov, 2016, 15(6): 379-380.
|
[2] |
DiMasi JA, Grabowski HG, Hansen RW. The cost of drug development[J]. N Engl J Med, 2015, 372(20): 1972.
|
[3] |
Schirle M, Jenkins JL. Identifying compound efficacy targets in phenotypic drug discovery[J]. Drug Discov Today, 2016, 21(1): 82-89.
|
[4] |
Mak KK, Pichika MR. Artificial intelligence in drug development: present status and future prospects[J]. Drug Discov Today, 2019, 24(3): 773-780.
|
[5] |
Chen HM, Engkvist O, Wang YH, et al. The rise of deep learning in drug discovery[J]. Drug Discov Today, 2018, 23(6): 1241-1250.
|
[6] |
Rifaioglu AS, Atas H, Martin MJ, et al. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases[J]. Brief Bioinform, 2019, 20(5): 1878-1912.
|
[7] |
Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589.
|
[8] |
Baek M, DiMaio F, Anishchenko I, et al. Accurate prediction of protein structures and interactions using a three-track neural network[J]. Science, 2021, 373(6557): 871-876.
|
[9] |
Raies A, Tulodziecka E, Stainer J, et al. DrugnomeAI is an ensemble machine-learning framework for predicting druggability of candidate drug targets[J]. Commun Biol, 2022, 5(1): 1291.
|
[10] |
Luo FL, Wang MH, Liu Y, et al. DeepPhos: prediction of protein phosphorylation sites with deep learning[J]. Bioinformatics, 2019, 35(16): 2766-2773.
|
[11] |
Du HY, Jiang DJ, Gao JB, et al. Proteome-wide profiling of the covalent-druggable cysteines with a structure-based deep graph learning network[J]. Research, 2022, 2022: 9873564.
|
[12] |
Patel L, Shukla T, Huang XZ, et al. Machine learning methods in drug discovery[J]. Molecules, 2020, 25(22): 5277.
|
[13] |
Xie QQ, Zhong L, Pan YL, et al. Combined SVM-based and docking-based virtual screening for retrieving novel inhibitors of c-Met[J]. Eur J Med Chem, 2011, 46(9): 3675-3680.
|
[14] |
Chen JJF, Visco DP
|
[15] |
Chen JJF, Visco DP
|
[16] |
Singh H, Singh S, Singla D, et al. QSAR based model for discriminating EGFR inhibitors and non-inhibitors using Random forest[J]. Biol Direct, 2015, 10: 10.
|
[17] |
Prathipati P, Ma NL, Keller TH. Global Bayesian models for the prioritization of antitubercular agents[J]. J Chem Inf Model, 2008, 48(12): 2362-2370.
|
[18] |
Tuerkova A, Bongers BJ, Norinder U, et al. Identifying novel inhibitors for hepatic organic anion transporting polypeptides by machine learning-based virtual screening[J]. J Chem Inf Model, 2022, 62(24): 6323-6335.
|
[19] |
Xu YQ, Chen PP, Lin XH, et al. Discovery of CDK4 inhibitors by convolutional neural networks[J]. Future Med Chem, 2019, 11(3): 165-177.
|
[20] |
Duvenaud D, Maclaurin D, Aguilera-Iparraguirre J, et al. Convolutional networks on graphs for learning molecular fingerprints[C]//
|
[21] |
Peng JJ, Wang YX, Guan JJ, et al. An end-to-end heterogeneous graph representation learning-based framework for drug-target interaction prediction[J]. Brief Bioinform, 2021, 22(5):
|
[22] |
Shao KH, Zhang YH, Wen YQ, et al. DTI-HETA: prediction of drug-target interactions based on GCN and GAT on heterogeneous graph[J]. Brief Bioinform, 2022, 23(3):
|
[23] |
Wu YF, Gao M, Zeng M, et al. BridgeDPI: a novel Graph Neural Network for predicting drug-protein interactions[J]. Bioinformatics, 2022, 38(9): 2571-2578.
|
[24] |
Tsubaki M, Tomii K, Jun SS. Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences[J]. Bioinformatics, 2019, 35(2): 309-318.
|
[25] |
SMILES Weininger D., a chemical language and information system. 1. Introduction to methodology and encoding rules[J]. J Chem Inf Comput Sci, 1988, 28(1): 31-36.
|
[26] |
Zhang YF, Wang XG, Kaushik AC, et al. SPVec: a Word2Vec-inspired feature representation method for drug-target interaction prediction[J]. Front Chem, 2019, 7: 895.
|
[27] |
Xu YQ, Yao HQ, Lin KJ. An overview of neural networks for drug discovery and the inputs used[J]. Expert Opin Drug Discov, 2018, 13(12): 1091-1102.
|
[28] |
Li FL, Hu QY, Zhang XL, et al. DeepPROTACs is a deep learning-based targeted degradation predictor for PROTACs[J]. Nat Commun, 2022, 13(1): 7133.
|
[29] |
Ballester PJ, Mitchell JB. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking[J]. Bioinformatics, 2010, 26(9): 1169-1175.
|
[30] |
Sánchez-Cruz N, Medina-Franco JL, Mestres J, et al. Extended connectivity interaction features: improving binding affinity prediction through chemical description[J]. Bioinformatics, 2021, 37(10): 1376-1382.
|
[31] |
?ztürk H, ?zgür A, Ozkirimli E. DeepDTA: deep drug-target binding affinity prediction[J]. Bioinformatics, 2018, 34(17): i821-i829.
|
[32] |
Hua Y, Song XN, Feng ZH, et al. MFR-DTA: a multi-functional and robust model for predicting drug-target binding affinity and region[J]. Bioinformatics, 2023, 39(2):
|
[33] |
Nguyen T, Le H, Quinn TP, et al. GraphDTA: predicting drug-target binding affinity with graph neural networks[J]. Bioinformatics, 2021, 37(8): 1140-1147.
|
[34] |
Yang ZD, Zhong WH, Zhao L, et al. MGraphDTA: deep multiscale graph neural network for explainable drug-target binding affinity prediction[J]. Chem Sci, 2022, 13(3): 816-833.
|
[35] |
Krasoulis A, Antonopoulos N, Pitsikalis V, et al. DENVIS: scalable and high-throughput virtual screening using graph neural networks with atomic and surface protein pocket features[J]. J Chem Inf Model, 2022, 62(19): 4642-4659.
|
[36] |
Ragoza M, Hochuli J, Idrobo E, et al. Protein-ligand scoring with convolutional neural networks[J]. J Chem Inf Model, 2017, 57(4): 942-957.
|
[37] |
Hochuli J, Helbling A, Skaist T, et al. Visualizing convolutional neural network protein-ligand scoring[J]. J Mol Graph Model, 2018, 84: 96-108.
|
[38] |
Jiménez J, ?kali? M, Martínez-Rosell G, et al. KDEEP: protein-ligand absolute binding affinity prediction via 3D-convolutional neural networks[J]. J Chem Inf Model, 2018, 58(2): 287-296.
|
[39] |
G?ller AH, Kuhnke L, Montanari F, et al. Bayer''s in silico ADMET platform: a journey of machine learning over the past two decades[J]. Drug Discov Today, 2020, 25(9): 1702-1709.
|
[40] |
Mayr A, Klambauer G, Unterthiner T, et al. DeepTox: toxicity prediction using deep learning[J]. Front Environ Sci, 2016, 3: 80.
|
[41] |
Xiong GL, Wu ZX, Yi JC, et al. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties[J]. Nucleic Acids Res, 2021, 49(W1): W5-W14.
|
[42] |
Lu L, Qin JL, Chen JD, et al. Recent computational drug repositioning strategies against SARS-CoV-2[J]. Comput Struct Biotechnol J, 2022, 20: 5713-5728.
|
[43] |
Su XR, Hu L, You ZH, et al. A deep learning method for repurposing antiviral drugs against new viruses via multi-view nonnegative matrix factorization and its application to SARS-CoV-2[J]. Brief Bioinform, 2022, 23(1):
|
[44] |
Zeng XX, Song X, Ma TF, et al. Repurpose open data to discover therapeutics for COVID-19 using deep learning[J]. J Proteome Res, 2020, 19(11): 4624-4636.
|
[45] |
Zeng XX, Wang F, Luo Y, et al. Deep generative molecular design reshapes drug discovery[J]. Cell Rep Med, 2022, 3(12): 100794.
|
[46] |
Xu YJ, Lin KJ, Wang SW, et al. Deep learning for molecular generation[J]. Future Med Chem, 2019, 11(6): 567-597.
|
[47] |
Tong XC, Liu XH, Tan XQ, et al. Generative models for de novo drug design[J]. J Med Chem, 2021, 64(19): 14011-14027.
|
[48] |
Li XY, Xu YQ, Yao HQ, et al. Chemical space exploration based on recurrent neural networks: applications in discovering kinase inhibitors[J]. J Cheminform, 2020, 12(1): 42.
|
[49] |
Segler MHS, Kogej T, Tyrchan C, et al. Generating focused molecule libraries for drug discovery with recurrent neural networks[J]. ACS Cent Sci, 2018, 4(1): 120-131.
|
[50] |
Olivecrona M, Blaschke T, Engkvist O, et al. Molecular de-novo design through deep reinforcement learning[J]. J Cheminform, 2017, 9(1): 48.
|
[51] |
Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de novo drug design[J]. Sci Adv, 2018, 4(7):
|
[52] |
Zhavoronkov A, Ivanenkov YA, Aliper A, et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors[J]. Nat Biotechnol, 2019, 37(9): 1038-1040.
|
[53] |
Zheng SJ, Tan YH, Wang ZY, et al. Accelerated rational PROTAC design via deep learning and molecular simulations[J]. Nat Mach Intell, 2022, 4(9): 739-748.
|
[54] |
Gómez-Bombarelli R, Wei JN, Duvenaud D, et al. Automatic chemical design using a data-driven continuous representation of molecules[J]. ACS Cent Sci, 2018, 4(2): 268-276.
|
[55] |
Polykovskiy D, Zhebrak A, Vetrov D, et al. Entangled conditional adversarial autoencoder for de novo drug discovery[J]. Mol Pharm, 2018, 15(10): 4398-4405.
|
[56] |
Wang JK, Wang XR, Sun HY, et al. ChemistGA: a chemical synthesizable accessible molecular generation algorithm for real-world drug discovery[J]. J Med Chem, 2022, 65(18): 12482-12496.
|
[57] |
Khemchandani Y, O''Hagan S, Samanta S, et al. DeepGraphMolGen, a multi-objective, computational strategy for generating molecules with desirable properties: a graph convolution and reinforcement learning approach[J]. J Cheminform, 2020, 12(1): 53.
|
[58] |
Maziarka ?, Pocha A, Kaczmarczyk J, et al. Mol-CycleGAN: a generative model for molecular optimization[J]. J Cheminform, 2020, 12(1): 2.
|
[59] |
Wang MY, Hsieh CY, Wang JK, et al. RELATION: a deep generative model for structure-based de novo drug design[J]. J Med Chem, 2022, 65(13): 9478-9492.
|
[60] |
Ragoza M, Masuda T, Koes DR. Generating 3D molecules conditional on receptor binding sites with deep generative models[J]. Chem Sci, 2022, 13(9): 2701-2713.
|
[61] |
Wang JK, Hsieh CY, Wang MY, et al. Multi-constraint molecular generation based on conditional transformer, knowledge distillation and reinforcement learning[J]. Nat Mach Intell, 2021, 3(10): 914-922.
|
[62] |
Li YB, Zhang LR, Liu ZM. Multi-objective de novo drug design with conditional graph generative model[J]. J Cheminform, 2018, 10(1): 33.
|
[63] |
Segler MHS, Preuss M, Waller MP. Planning chemical syntheses with deep neural networks and symbolic AI[J]. Nature, 2018, 555(7698): 604-610.
|
[64] |
Ishida S, Terayama K, Kojima R, et al. Prediction and interpretable visualization of retrosynthetic reactions using graph convolutional networks[J]. J Chem Inf Model, 2019, 59(12): 5026-5033.
|
[65] |
Schwaller P, Petraglia R, Zullo V, et al. Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy[J]. Chem Sci, 2020, 11(12): 3316-3325.
|
[66] |
Yuan WN, Chen GX, Chen CYC. FusionDTA: attention-based feature polymerizer and knowledge distillation for drug-target binding affinity prediction[J]. Brief Bioinform, 2022, 23(1):
|
[67] |
Goebel L, Müller MP, Goody RS, et al. KRasG12C inhibitors in clinical trials: a short historical perspective[J]. RSC Med Chem, 2020, 11(7): 760-770.
|
1. |
王庆勇,唐良贵,王振宇,辜丽川. ChemRB:基于双向分子环约束的新型生成模型. 陕西师范大学学报(自然科学版). 2025(01): 45-59 .
![]() | |
2. |
尹凤,周海龙,徐帆. 心血管药物相互作用预测模型的建立与应用. 中国医院药学杂志. 2024(18): 2109-2114 .
![]() |