• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
GU Zhihao, GUO Wenhao, YAO Hequan, LI Xuanyi, LIN Kejiang. Research progress of the screening and generation of lead compounds based on artificial intelligence model[J]. Journal of China Pharmaceutical University, 2023, 54(3): 294-304. DOI: 10.11665/j.issn.1000-5048.2023042201
Citation: GU Zhihao, GUO Wenhao, YAO Hequan, LI Xuanyi, LIN Kejiang. Research progress of the screening and generation of lead compounds based on artificial intelligence model[J]. Journal of China Pharmaceutical University, 2023, 54(3): 294-304. DOI: 10.11665/j.issn.1000-5048.2023042201

Research progress of the screening and generation of lead compounds based on artificial intelligence model

Funds: This study was supported by the National Natural Science Foundation of China (No. 81903439)
More Information
  • Received Date: April 21, 2023
  • Revised Date: May 23, 2023
  • Excellent lead compounds have a profound influence on drug development and can improve the success rate of product launch. It is expensive and time-consuming to discover lead compounds by traditional methods, yet artificial intelligence (AI) can discover good lead compounds efficiently.This article systematically summarizes the research progress of obtaining lead compounds through the screening and generation models of AI, classifies different models according to the type of information input, focuses on drug repurposing by screening model and multi-objective drug design by generation model, and discusses the development prospect of AI in the research field of lead compounds, aiming to provide new research ideas for the application of AI in lead compounds.
  • [1]
    Smietana K, Siatkowski M, M?ller M. Trends in clinical success rates[J]. Nat Rev Drug Discov, 2016, 15(6): 379-380.
    [2]
    DiMasi JA, Grabowski HG, Hansen RW. The cost of drug development[J]. N Engl J Med, 2015, 372(20): 1972.
    [3]
    Schirle M, Jenkins JL. Identifying compound efficacy targets in phenotypic drug discovery[J]. Drug Discov Today, 2016, 21(1): 82-89.
    [4]
    Mak KK, Pichika MR. Artificial intelligence in drug development: present status and future prospects[J]. Drug Discov Today, 2019, 24(3): 773-780.
    [5]
    Chen HM, Engkvist O, Wang YH, et al. The rise of deep learning in drug discovery[J]. Drug Discov Today, 2018, 23(6): 1241-1250.
    [6]
    Rifaioglu AS, Atas H, Martin MJ, et al. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases[J]. Brief Bioinform, 2019, 20(5): 1878-1912.
    [7]
    Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589.
    [8]
    Baek M, DiMaio F, Anishchenko I, et al. Accurate prediction of protein structures and interactions using a three-track neural network[J]. Science, 2021, 373(6557): 871-876.
    [9]
    Raies A, Tulodziecka E, Stainer J, et al. DrugnomeAI is an ensemble machine-learning framework for predicting druggability of candidate drug targets[J]. Commun Biol, 2022, 5(1): 1291.
    [10]
    Luo FL, Wang MH, Liu Y, et al. DeepPhos: prediction of protein phosphorylation sites with deep learning[J]. Bioinformatics, 2019, 35(16): 2766-2773.
    [11]
    Du HY, Jiang DJ, Gao JB, et al. Proteome-wide profiling of the covalent-druggable cysteines with a structure-based deep graph learning network[J]. Research, 2022, 2022: 9873564.
    [12]
    Patel L, Shukla T, Huang XZ, et al. Machine learning methods in drug discovery[J]. Molecules, 2020, 25(22): 5277.
    [13]
    Xie QQ, Zhong L, Pan YL, et al. Combined SVM-based and docking-based virtual screening for retrieving novel inhibitors of c-Met[J]. Eur J Med Chem, 2011, 46(9): 3675-3680.
    [14]
    Chen JJF, Visco DPJr. Developing an in silico pipeline for faster drug candidate discovery: virtual high throughput screening with the Signature molecular descriptor using support vector machine models[J]. Chem Eng Sci, 2017, 159: 31-42.
    [15]
    Chen JJF, Visco DPJr. Identifying novel factor XIIa inhibitors with PCA-GA-SVM developed vHTS models[J]. Eur J Med Chem, 2017, 140: 31-41.
    [16]
    Singh H, Singh S, Singla D, et al. QSAR based model for discriminating EGFR inhibitors and non-inhibitors using Random forest[J]. Biol Direct, 2015, 10: 10.
    [17]
    Prathipati P, Ma NL, Keller TH. Global Bayesian models for the prioritization of antitubercular agents[J]. J Chem Inf Model, 2008, 48(12): 2362-2370.
    [18]
    Tuerkova A, Bongers BJ, Norinder U, et al. Identifying novel inhibitors for hepatic organic anion transporting polypeptides by machine learning-based virtual screening[J]. J Chem Inf Model, 2022, 62(24): 6323-6335.
    [19]
    Xu YQ, Chen PP, Lin XH, et al. Discovery of CDK4 inhibitors by convolutional neural networks[J]. Future Med Chem, 2019, 11(3): 165-177.
    [20]
    Duvenaud D, Maclaurin D, Aguilera-Iparraguirre J, et al. Convolutional networks on graphs for learning molecular fingerprints[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2. New York: ACM, 2015: 2224-2232.
    [21]
    Peng JJ, Wang YX, Guan JJ, et al. An end-to-end heterogeneous graph representation learning-based framework for drug-target interaction prediction[J]. Brief Bioinform, 2021, 22(5): bbaa430.
    [22]
    Shao KH, Zhang YH, Wen YQ, et al. DTI-HETA: prediction of drug-target interactions based on GCN and GAT on heterogeneous graph[J]. Brief Bioinform, 2022, 23(3): bbac109.
    [23]
    Wu YF, Gao M, Zeng M, et al. BridgeDPI: a novel Graph Neural Network for predicting drug-protein interactions[J]. Bioinformatics, 2022, 38(9): 2571-2578.
    [24]
    Tsubaki M, Tomii K, Jun SS. Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences[J]. Bioinformatics, 2019, 35(2): 309-318.
    [25]
    SMILES Weininger D., a chemical language and information system. 1. Introduction to methodology and encoding rules[J]. J Chem Inf Comput Sci, 1988, 28(1): 31-36.
    [26]
    Zhang YF, Wang XG, Kaushik AC, et al. SPVec: a Word2Vec-inspired feature representation method for drug-target interaction prediction[J]. Front Chem, 2019, 7: 895.
    [27]
    Xu YQ, Yao HQ, Lin KJ. An overview of neural networks for drug discovery and the inputs used[J]. Expert Opin Drug Discov, 2018, 13(12): 1091-1102.
    [28]
    Li FL, Hu QY, Zhang XL, et al. DeepPROTACs is a deep learning-based targeted degradation predictor for PROTACs[J]. Nat Commun, 2022, 13(1): 7133.
    [29]
    Ballester PJ, Mitchell JB. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking[J]. Bioinformatics, 2010, 26(9): 1169-1175.
    [30]
    Sánchez-Cruz N, Medina-Franco JL, Mestres J, et al. Extended connectivity interaction features: improving binding affinity prediction through chemical description[J]. Bioinformatics, 2021, 37(10): 1376-1382.
    [31]
    ?ztürk H, ?zgür A, Ozkirimli E. DeepDTA: deep drug-target binding affinity prediction[J]. Bioinformatics, 2018, 34(17): i821-i829.
    [32]
    Hua Y, Song XN, Feng ZH, et al. MFR-DTA: a multi-functional and robust model for predicting drug-target binding affinity and region[J]. Bioinformatics, 2023, 39(2): btad056.
    [33]
    Nguyen T, Le H, Quinn TP, et al. GraphDTA: predicting drug-target binding affinity with graph neural networks[J]. Bioinformatics, 2021, 37(8): 1140-1147.
    [34]
    Yang ZD, Zhong WH, Zhao L, et al. MGraphDTA: deep multiscale graph neural network for explainable drug-target binding affinity prediction[J]. Chem Sci, 2022, 13(3): 816-833.
    [35]
    Krasoulis A, Antonopoulos N, Pitsikalis V, et al. DENVIS: scalable and high-throughput virtual screening using graph neural networks with atomic and surface protein pocket features[J]. J Chem Inf Model, 2022, 62(19): 4642-4659.
    [36]
    Ragoza M, Hochuli J, Idrobo E, et al. Protein-ligand scoring with convolutional neural networks[J]. J Chem Inf Model, 2017, 57(4): 942-957.
    [37]
    Hochuli J, Helbling A, Skaist T, et al. Visualizing convolutional neural network protein-ligand scoring[J]. J Mol Graph Model, 2018, 84: 96-108.
    [38]
    Jiménez J, ?kali? M, Martínez-Rosell G, et al. KDEEP: protein-ligand absolute binding affinity prediction via 3D-convolutional neural networks[J]. J Chem Inf Model, 2018, 58(2): 287-296.
    [39]
    G?ller AH, Kuhnke L, Montanari F, et al. Bayer''s in silico ADMET platform: a journey of machine learning over the past two decades[J]. Drug Discov Today, 2020, 25(9): 1702-1709.
    [40]
    Mayr A, Klambauer G, Unterthiner T, et al. DeepTox: toxicity prediction using deep learning[J]. Front Environ Sci, 2016, 3: 80.
    [41]
    Xiong GL, Wu ZX, Yi JC, et al. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties[J]. Nucleic Acids Res, 2021, 49(W1): W5-W14.
    [42]
    Lu L, Qin JL, Chen JD, et al. Recent computational drug repositioning strategies against SARS-CoV-2[J]. Comput Struct Biotechnol J, 2022, 20: 5713-5728.
    [43]
    Su XR, Hu L, You ZH, et al. A deep learning method for repurposing antiviral drugs against new viruses via multi-view nonnegative matrix factorization and its application to SARS-CoV-2[J]. Brief Bioinform, 2022, 23(1): bbab526.
    [44]
    Zeng XX, Song X, Ma TF, et al. Repurpose open data to discover therapeutics for COVID-19 using deep learning[J]. J Proteome Res, 2020, 19(11): 4624-4636.
    [45]
    Zeng XX, Wang F, Luo Y, et al. Deep generative molecular design reshapes drug discovery[J]. Cell Rep Med, 2022, 3(12): 100794.
    [46]
    Xu YJ, Lin KJ, Wang SW, et al. Deep learning for molecular generation[J]. Future Med Chem, 2019, 11(6): 567-597.
    [47]
    Tong XC, Liu XH, Tan XQ, et al. Generative models for de novo drug design[J]. J Med Chem, 2021, 64(19): 14011-14027.
    [48]
    Li XY, Xu YQ, Yao HQ, et al. Chemical space exploration based on recurrent neural networks: applications in discovering kinase inhibitors[J]. J Cheminform, 2020, 12(1): 42.
    [49]
    Segler MHS, Kogej T, Tyrchan C, et al. Generating focused molecule libraries for drug discovery with recurrent neural networks[J]. ACS Cent Sci, 2018, 4(1): 120-131.
    [50]
    Olivecrona M, Blaschke T, Engkvist O, et al. Molecular de-novo design through deep reinforcement learning[J]. J Cheminform, 2017, 9(1): 48.
    [51]
    Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de novo drug design[J]. Sci Adv, 2018, 4(7): eaap7885.
    [52]
    Zhavoronkov A, Ivanenkov YA, Aliper A, et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors[J]. Nat Biotechnol, 2019, 37(9): 1038-1040.
    [53]
    Zheng SJ, Tan YH, Wang ZY, et al. Accelerated rational PROTAC design via deep learning and molecular simulations[J]. Nat Mach Intell, 2022, 4(9): 739-748.
    [54]
    Gómez-Bombarelli R, Wei JN, Duvenaud D, et al. Automatic chemical design using a data-driven continuous representation of molecules[J]. ACS Cent Sci, 2018, 4(2): 268-276.
    [55]
    Polykovskiy D, Zhebrak A, Vetrov D, et al. Entangled conditional adversarial autoencoder for de novo drug discovery[J]. Mol Pharm, 2018, 15(10): 4398-4405.
    [56]
    Wang JK, Wang XR, Sun HY, et al. ChemistGA: a chemical synthesizable accessible molecular generation algorithm for real-world drug discovery[J]. J Med Chem, 2022, 65(18): 12482-12496.
    [57]
    Khemchandani Y, O''Hagan S, Samanta S, et al. DeepGraphMolGen, a multi-objective, computational strategy for generating molecules with desirable properties: a graph convolution and reinforcement learning approach[J]. J Cheminform, 2020, 12(1): 53.
    [58]
    Maziarka ?, Pocha A, Kaczmarczyk J, et al. Mol-CycleGAN: a generative model for molecular optimization[J]. J Cheminform, 2020, 12(1): 2.
    [59]
    Wang MY, Hsieh CY, Wang JK, et al. RELATION: a deep generative model for structure-based de novo drug design[J]. J Med Chem, 2022, 65(13): 9478-9492.
    [60]
    Ragoza M, Masuda T, Koes DR. Generating 3D molecules conditional on receptor binding sites with deep generative models[J]. Chem Sci, 2022, 13(9): 2701-2713.
    [61]
    Wang JK, Hsieh CY, Wang MY, et al. Multi-constraint molecular generation based on conditional transformer, knowledge distillation and reinforcement learning[J]. Nat Mach Intell, 2021, 3(10): 914-922.
    [62]
    Li YB, Zhang LR, Liu ZM. Multi-objective de novo drug design with conditional graph generative model[J]. J Cheminform, 2018, 10(1): 33.
    [63]
    Segler MHS, Preuss M, Waller MP. Planning chemical syntheses with deep neural networks and symbolic AI[J]. Nature, 2018, 555(7698): 604-610.
    [64]
    Ishida S, Terayama K, Kojima R, et al. Prediction and interpretable visualization of retrosynthetic reactions using graph convolutional networks[J]. J Chem Inf Model, 2019, 59(12): 5026-5033.
    [65]
    Schwaller P, Petraglia R, Zullo V, et al. Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy[J]. Chem Sci, 2020, 11(12): 3316-3325.
    [66]
    Yuan WN, Chen GX, Chen CYC. FusionDTA: attention-based feature polymerizer and knowledge distillation for drug-target binding affinity prediction[J]. Brief Bioinform, 2022, 23(1): bbab506.
    [67]
    Goebel L, Müller MP, Goody RS, et al. KRasG12C inhibitors in clinical trials: a short historical perspective[J]. RSC Med Chem, 2020, 11(7): 760-770.
  • Cited by

    Periodical cited type(2)

    1. 王庆勇,唐良贵,王振宇,辜丽川. ChemRB:基于双向分子环约束的新型生成模型. 陕西师范大学学报(自然科学版). 2025(01): 45-59 .
    2. 尹凤,周海龙,徐帆. 心血管药物相互作用预测模型的建立与应用. 中国医院药学杂志. 2024(18): 2109-2114 .

    Other cited types(0)

Catalog

    Article views (491) PDF downloads (392) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return