Citation: | WANG Maolin, GUO Weiwei, ZHENG Yueqin. Advances in fluorescence probes for detection of hydrogen polysulfides[J]. Journal of China Pharmaceutical University, 2023, 54(5): 553-563. DOI: 10.11665/j.issn.1000-5048.2023042804 |
[1] |
Cao X, Ding L, Xie ZZ, et al. A review of hydrogen sulfide synthesis, metabolism, and measurement: is modulation of hydrogen sulfide a novel therapeutic for cancer[J]? Antioxid Redox Signal, 2019, 31(1): 1-38.
|
[2] |
Sawa T, Takata T, Matsunaga T, et al. Chemical biology of reactive sulfur species: hydrolysis-driven equilibrium of polysulfides as a determinant of physiological functions[J]. Antioxid Redox Signal, 2022, 36(4/5/6): 327-336.
|
[3] |
Sun HJ, Wu ZY, Nie XW, et al. Role of hydrogen sulfide and polysulfides in neurological diseases: focus on protein S-persulfidation[J]. Curr Neuropharmacol, 2021, 19(6): 868-884.
|
[4] |
Giuffrè A, Vicente JB. Hydrogen sulfide biochemistry and interplay with other gaseous mediators in mammalian physiology[J]. Oxid Med Cell Longev, 2018, 2018: 6290931.
|
[5] |
Liu H, Radford MN, Yang CT, et al. Inorganic hydrogen polysulfides: chemistry, chemical biology and detection[J]. Br J Pharmacol, 2019, 176(4): 616-627.
|
[6] |
Kimura H. Hydrogen sulfide (H2S) and polysulfide (H2Sn) signaling: the first 25 years[J]. Biomolecules, 2021, 11(6): 896.
|
[7] |
Kimura H. Signaling by hydrogen sulfide (H2S) and polysulfides (H2Sn) in the central nervous system[J]. Neurochem Int, 2019, 126: 118-125.
|
[8] |
Kimura H. Signaling by Hydrogen sulfide (H2S) and polysulfides (H2Sn) and the interaction with other signaling pathways[M]// Pluth MD. Hydrogen Sulfide: Chemical Biology Basics, Detection Methods, Therapeutic Applications, and Case Studies. Hoboken, New Jersey : Wiley,2022: 27-47.
|
[9] |
Kimura Y, Mikami Y, Osumi K, et al. Polysulfides are possible H2S-derived signaling molecules in rat brain[J]. FASEB J, 2013, 27(6): 2451-2457.
|
[10] |
Pozsgai G, Bátai IZ, Pintér E. Effects of sulfide and polysulfides transmitted by direct or signal transduction-mediated activation of TRPA1 channels[J]. Br J Pharmacol, 2019, 176(4): 628-645.
|
[11] |
Greiner R, Pálinkás Z, B?sell K, et al. Polysulfides link H2S to protein thiol oxidation[J]. Antioxid Redox Signal, 2013, 19(15): 1749-1765.
|
[12] |
Jarosz AP, Wei WL, Gauld JW, et al. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is inactivated by S-sulfuration in vitro[J]. Free Radic Biol Med, 2015, 89: 512-521.
|
[13] |
Stubbert D, Prysyazhna O, Rudyk O, et al. Protein kinase G Iα oxidation paradoxically underlies blood pressure lowering by the reductant hydrogen sulfide[J]. Hypertension, 2014, 64(6): 1344-1351.
|
[14] |
Koike S, Ogasawara Y, Shibuya N, et al. Polysulfide exerts a protective effect against cytotoxicity caused by t-buthylhydrope-roxide through Nrf2 signaling in neuroblastoma cells[J]. FEBS Lett, 2013, 587(21): 3548-3555.
|
[15] |
Koike S, Kawamura K, Kimura Y, et al. Analysis of endogenous H2S and H2Sn in mouse brain by high-performance liquid chromatography with fluorescence and tandem mass spectrometric detection[J]. Free Radic Biol Med, 2017, 113: 355-362.
|
[16] |
Shieh M, Xu S, Lederberg OL, et al. Detection of sulfane sulfur species in biological systems[J]. Redox Biol, 2022, 57: 102502.
|
[17] |
Iqbal MZ, Alam S, Faisal MM, et al. Recent advancement in the performance of solar cells by incorporating transition metal dichalcogenides as counter electrode and photoabsorber[J]. Int J Energy Res, 2019, 43(8): 3058-3079.
|
[18] |
Kurek MR, Gilhooly WP, Druschel GK, et al. The use of dithiothreitol for the quantitative analysis of elemental sulfur concentrations and isotopes in environmental samples[J]. Chem Geol, 2018, 481: 18-26.
|
[19] |
Fukuto JM, Vega VS, Works C, et al. The chemical biology of hydrogen sulfide and related hydropersulfides: interactions with biologically relevant metals and metalloproteins[J]. Curr Opin Chem Biol, 2020, 55: 52-58.
|
[20] |
Benchoam D, Cuevasanta E, M?ller MN, et al. Persulfides, at the crossroads between hydrogen sulfide and thiols[J]. Essays Biochem, 2020, 64(1): 155-168.
|
[21] |
Nagai S, Koshiishi I. Simple and sensitive quantification of glutathione hydropersulfide alkylated using iodoacetamide by high-performance liquid chromatography with post-column deriva-tization[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2021, 1163: 122516.
|
[22] |
Kutney GW, Turnbull K. Compounds containing the sulfur-sulfur double bond[J]. Chem Rev, 1982, 82(4): 333-357.
|
[23] |
Chen W, Liu CR, Peng B, et al. New fluorescent probes for sulfane sulfurs and the application in bioimaging[J]. Chem Sci, 2013, 4(7): 2892-2896.
|
[24] |
Fischer A. Acidit?t der Sulfane und Zusammensetzung der w?sserigen Alkalipolysulfidl?sungen[D]. Zurich :ETH Zurich, 1960:74.
|
[25] |
Chung J, Li HD, Lim CS, et al. Two-photon imaging of hydrogen polysulfides in living cells and hippocampal tissues[J]. Sens Actuat B, 2020, 322: 128564.
|
[26] |
Misra R, Bhattacharyya SP. Intramolecular Charge Transfer[M]. Weinheim:Wiley-VCH, 2018:4-18.
|
[27] |
Calderon JS, Thomson RH. Autoxidation of naphthols: a new entry to the perylene system[J]. J Chem Soc, Perkin Trans 1, 1988(3): 583.
|
[28] |
Qiu TC, Wei HP, Cheng D, et al. Towards perylenequinonoid: effective application to reversible fluorescent probe for monitoring hydrogen persulfide in solvents and living cells[J]. Talanta, 2017, 164: 529-533.
|
[29] |
Joshi HC, Antonov L. Excited-state intramolecular proton transfer: a short introductory review[J]. Molecules, 2021, 26(5): 1475.
|
[30] |
Hoffmann MR. Kinetics and mechanism of oxidation of hydrogen sulfide by hydrogen peroxide in acidic solution[J]. Environ Sci Technol, 1977, 11(1): 61-66.
|
[31] |
Liu CR, Chen W, Shi W, et al. Rational design and bioimaging applications of highly selective fluorescence probes for hydrogen polysulfides[J]. J Am Chem Soc, 2014, 136(20): 7257-7260.
|
[32] |
Bonam SR, Wang FJ, Muller S. Lysosomes as a therapeutic target[J]. Nat Rev Drug Discov, 2019, 18(12): 923-948.
|
[33] |
Ren YS, Zhang LL, Zhou ZY, et al. A new lysosome-targetable fluorescent probe with a large stokes shift for detection of endogenous hydrogen polysulfides in living cells[J]. Anal Chim Acta, 2019, 1056: 117-124.
|
[34] |
Xia B, Zhou Y, Wang QL, et al. Photoinduced electron transfer and remarkable enhancement of magnetic susceptibility in bridging pyrazine complexes[J]. Dalton Trans, 2018, 47(44): 15888-15896.
|
[35] |
Liu FL, Yuchi XX, Zhang MH, et al. A fluorescent probe derived from Berberrubine for detecting hydrogen polysulfide in food samples[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2022, 267(
|
[36] |
Liu T, Peng QY, Wang JY, et al. A FRET-based ratiometric fluorescent probe for hydrogen polysulfide detection in living cells and zebrafish[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2022, 267(
|
[37] |
Kaur A, Kaur P, Ahuja S. F?rster resonance energy transfer (FRET) and applications thereof[J]. Anal Methods, 2020, 12(46): 5532-5550.
|
[38] |
Ma YY, Xu ZC, Sun Q, et al. A semi-naphthorhodafluor-based red-emitting fluorescent probe for tracking of hydrogen polysulfide in living cells and zebrafish[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2021, 247: 119105.
|
[39] |
Chen W, Rosser EW, Zhang D, et al. A specific nucleophilic ring-opening reaction of aziridines as a unique platform for the construction of hydrogen polysulfides sensors[J]. Org Lett, 2015, 17(11): 2776-2779.
|
[40] |
Wang C, Chi WJ, Qiao QL, et al. Twisted intramolecular charge transfer (TICT) and twists beyond TICT: from mechanisms to rational designs of bright and sensitive fluorophores[J]. Chem Soc Rev, 2021, 50(22): 12656-12678.
|
[41] |
Li W, Wang L, Yin SL, et al. Engineering a highly selective probe for ratiometric imaging of H2Sn and revealing its signaling pathway in fatty liver disease[J]. Chem Sci, 2020, 11(30): 7991-7999.
|
[42] |
Padhan SK, Mishra VK, Murmu N, et al. Through bond energy transfer (TBET)-operated fluoride ion sensing via spirolactam ring opening of a coumarin-fluorescein bichromophoric dyad[J]. RSC Adv, 2020, 10(47): 28422-28430.
|
[43] |
Tsukamoto K, Ohsawa H, Nishiyama R, et al. 3′-O-(2-nitrobenzenesulfonyl)fluorescein as a fluorescent probe for hydrogen polysulfides by straightforward one-step deprotection[J]. Anal Sens, 2023, 3(3):
|
[44] |
Scinto SL, Bilodeau DA, Hincapie R, et al. Bioorthogonal chemistry[J]. Nat Rev Methods Primers, 2021, 1: 30.
|
[45] |
Bird RE, Lemmel SA, Yu X, et al. Bioorthogonal chemistry and its applications[J]. Bioconjug Chem, 2021, 32(12): 2457-2479.
|
[1] | BAO Ruichu, LI Changsheng, GU Yueqing. Novel oxazine fluorescent dyes for intraoperative neuroimaging[J]. Journal of China Pharmaceutical University, 2022, 53(6): 716-724. DOI: 10.11665/j.issn.1000-5048.20220611 |
[2] | SHEN Xinxin, ZHANG Yihua, HUANG Zhangjian. Research advances in hydrogen sulfide donors[J]. Journal of China Pharmaceutical University, 2019, 50(3): 265-272. DOI: 10.11665/j.issn.1000-5048.20190302 |
[3] | ZHANG Yuanyan, XIAO Yunfeng, LI Wenyan, WANG Yuhua. Effects of Roudoukou-8 San against hydrogen peroxide-induced injury of cardiomyocyte[J]. Journal of China Pharmaceutical University, 2018, 49(2): 222-228. DOI: 10.11665/j.issn.1000-5048.20180213 |
[4] | WANG Shuo, SUN Xiaoyan, CHEN Jinlong. Application of rhodamine-based fluorescent molecular probes in visualization of cellular pyruvic acid[J]. Journal of China Pharmaceutical University, 2018, 49(1): 79-86. DOI: 10.11665/j.issn.1000-5048.20180111 |
[5] | LI Yuyao, SONG Heng, CHENG Jian, AO Guizhen. Synthesis and biological evaluation of H2S donor ADT-OH derivatives[J]. Journal of China Pharmaceutical University, 2017, 48(3): 276-281. DOI: 10.11665/j.issn.1000-5048.20170304 |
[6] | SUN Yinxing, WU Ying, SONG Heng, CHENG Jian, AO Guizhen. Synthesis and biological evaluation of H2S donor memantine derivatives[J]. Journal of China Pharmaceutical University, 2016, 47(5): 543-547. DOI: 10.11665/j.issn.1000-5048.20160506 |
[7] | WANG Xiaoli, WANG Zhaoya, WANG Linna, JI Hui, ZHANG Yihua, YIN Jian. Design, synthesis and evaluation of hydrogen sulfide-releasing derivatives of ring opening 3-n-butylphthalide as novel platelet aggregation inhibitors[J]. Journal of China Pharmaceutical University, 2016, 47(2): 158-162. DOI: 10.11665/j.issn.1000-5048.20160205 |
[8] | ZHAO Zekai, WANG Lu, XUE Jingwei, ZHANG Can. Development of reduction response probes[J]. Journal of China Pharmaceutical University, 2014, 45(5): 535-539. DOI: 10.11665/j.issn.1000-5048.20140505 |
[9] | XIAN Wenying, XU Lujie, ZHANG Guangqin. Effects of H2S on tetrodotoxin-sensitive sodium currents in mouse dorsal root ganglion neurons[J]. Journal of China Pharmaceutical University, 2014, 45(1): 97-101. DOI: 10.11665/j.issn.1000-5048.20140118 |
[10] | Determination of Chemical Stability of Hydrogen Peroxide Dilute Solution by Agar Diffusion Test[J]. Journal of China Pharmaceutical University, 1995, (1): 59-61. |