Citation: | ZHANG Dongxue, QIAO Liang. Microfluidic chip and mass spectrometry-based detection of bacterial antimicrobial resistance and study of antimicrobial resistance mechanism[J]. Journal of China Pharmaceutical University, 2023, 54(6): 695-705. DOI: 10.11665/j.issn.1000-5048.2023060203 |
[1] |
Alanis AJ. Resistance to antibiotics: are we in the post-antibiotic era?[J]. Arch Med Res, 2005, 36(6): 697-705.
|
[2] |
Deresinski S. Methicillin-resistant Staphylococcus aureus: an evolutionary, epidemiologic, and therapeutic odyssey[J]. Clin Infect Dis, 2005, 40(4): 562-573.
|
[3] |
UNEP. Bracing for Superbugs: Strengthening environmental action in the ‘One Health’ response to antimicrobial resistance [R], 2023.
|
[4] |
Ayobami O, Brinkwirth S, Eckmanns T, et al. Antibiotic resistance in hospital-acquired ESKAPE-E infections in low- and lower-middle-income countries: a systematic review and meta-analysis[J]. Emerg Microbes Infect, 2022, 11(1): 443-451.
|
[5] |
Knobler S, Lemon S, Najafi M, et al. WHO global strategy for containment of antimicrobial resistance: executive summary, 2003.
|
[6] |
O''Neill J. Antimicrobial resistance: tackling a crisis for the health and wealth of nations, the review on antimicrobial resistance [R], 2014.
|
[7] |
Antibiotic resisance threats in the United States [R]: CDC Centers for Disease Control and Prevention, Department of Health and Human Services, 2019.
|
[8] |
MacLean RC, San Millan A. The evolution of antibiotic resistance[J]. Science, 2019, 365(6458): 1082-1083.
|
[9] |
Manage PM, Liyanage GY. Antibiotics induced antibacterial resistance[M]//Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology. Amsterdam: Elsevier, 2019: 429-448.
|
[10] |
Maslowska KH, Makiela-Dzbenska K, Fijalkowska IJ. The SOS system: a complex and tightly regulated response to DNA damage[J]. Environ Mol Mutagen, 2019, 60(4): 368-384.
|
[11] |
Kaushik V, Tiwari M, Tiwari V. Interaction of RecA mediated SOS response with bacterial persistence, biofilm formation, and host response[J]. Int J Biol Macromol, 2022, 217: 931-943.
|
[12] |
Alam MK, Alhhazmi A, DeCoteau JF, et al. RecA inhibitors potentiate antibiotic activity and block evolution of antibiotic resistance[J]. Cell Chem Biol, 2016, 23(3): 381-391.
|
[13] |
Crane JK, Alvarado CL, Sutton MD. Role of the SOS response in the generation of antibiotic resistance in vivo[J]. Antimicrob Agents Chemother, 2021, 65(7):
|
[14] |
Mohanraj RS, Mandal J. Azithromycin can induce SOS response and horizontal gene transfer of SXT element in Vibrio cholerae[J]. Mol Biol Rep, 2022, 49(6): 4737-4748.
|
[15] |
Miller C, Thomsen LE, Gaggero C, et al. SOS response induction by beta-lactams and bacterial defense against antibiotic lethality[J]. Science, 2004, 305(5690): 1629-1631.
|
[16] |
Justice SS, Hunstad DA, Cegelski L, et al. Morphological plasticity as a bacterial survival strategy[J]. Nat Rev Microbiol, 2008, 6(2): 162-168.
|
[17] |
Braga PC, Piatti G. Kinetics of filamentation of Escherichia coli induced by different sub-MICs of ceftibuten at different times[J]. Chemotherapy, 1993, 39(4): 272-277.
|
[18] |
Yao ZZ, Kahne D, Kishony R. Distinct single-cell morphological dynamics under beta-lactam antibiotics[J]. Mol Cell, 2012, 48(5): 705-712.
|
[19] |
Bos J, Zhang QC, Vyawahare S, et al. Emergence of antibiotic resistance from multinucleated bacterial filaments[J]. Proc Natl Acad Sci U S A, 2015, 112(1): 178-183.
|
[20] |
Banerjee S, Lo K, Ojkic N, et al. Mechanical feedback promotes bacterial adaptation to antibiotics[J]. Nat Phys, 2021, 17(3): 403-409.
|
[21] |
Patel R. MALDI-TOF MS for the diagnosis of infectious diseases[J]. Clin Chem, 2015, 61(1): 100-111.
|
[22] |
Saffert RT, Cunningham SA, Ihde SM, et al. Comparison of Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometer to BD Phoenix automated microbiology system for identification of gram-negative bacilli[J]. J Clin Microbiol, 2011, 49(3): 887-892.
|
[23] |
Zhu YD, Qiao L, Prudent M, et al. Sensitive and fast identification of bacteria in blood samples by immunoaffinity mass spectrometry for quick BSI diagnosis[J]. Chem Sci, 2016, 7(5): 2987-2995.
|
[24] |
Zhu YD, Gasilova N, Jovi? M, et al. Detection of antimicrobial resistance-associated proteins by titanium dioxide-facilitated intact bacteria mass spectrometry[J]. Chem Sci, 2018, 9(8): 2212-2221.
|
[25] |
Zhang Y, Tang Y, Tan CR, et al. Toward nanopore electrospray mass spectrometry: nanopore effects in the analysis of bacteria[J]. ACS Cent Sci, 2020, 6(6): 1001-1008.
|
[26] |
Goodacre R, Heald JK, Kell DB. Characterisation of intact microorganisms using electrospray ionisation mass spectrometry[J]. FEMS Microbiol Lett, 1999, 176(1): 17-24.
|
[27] |
Vaidyanathan S, Rowland JJ, Kell DB, et al. Discrimination of aerobic endospore-forming bacteria via electrospray-lonization mass spectrometry of whole cell suspensions[J]. Anal Chem, 2001, 73(17): 4134-4144.
|
[28] |
Dworzanski JP, Snyder AP, Chen R, et al. Identification of bacteria using tandem mass spectrometry combined with a proteome database and statistical scoring[J]. Anal Chem, 2004, 76(8): 2355-2366.
|
[29] |
Kinter M, Sherman NE. Protein Sequencing and Identification Using Tandem Mass Spectrometry: Kinter/Tandem Mass Spectrometry[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2000.
|
[30] |
Chen CY, Clark CG, Langner S, et al. Detection of antimicrobial resistance using proteomics and the comprehensive antibiotic resistance database: a case study[J]. Proteomics Clin Appl, 2020, 14(4):
|
[31] |
Blumenscheit C, Pfeifer Y, Werner G, et al. Unbiased antimicrobial resistance detection from clinical bacterial isolates using proteomics[J]. Anal Chem, 2021, 93(44): 14599-14608.
|
[32] |
Bertini I, Hu XY, Luchinat C. Global metabolomics characterization of bacteria: pre-analytical treatments and profiling[J]. Metabolomics, 2014, 10(2): 241-249.
|
[33] |
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification[J]. Can J Biochem Physiol, 1959, 37(8): 911-917.
|
[34] |
Eugster MR, Loessner MJ. Rapid analysis of Listeria monocytogenes cell wall teichoic acid carbohydrates by ESI-MS/MS[J]. PLoS One, 2011, 6(6):
|
[35] |
Chingin K, Liang JC, Chen HW. Direct analysis of in vitro grown microorganisms and mammalian cells by ambient mass spectrometry[J]. RSC Adv, 2014, 4(11): 5768-5781.
|
[36] |
Zhu JJ, Hill JE. Detection of Escherichia coli via VOC profiling using secondary electrospray ionization-mass spectrometry (SESI-MS)[J]. Food Microbiol, 2013, 34(2): 412-417.
|
[37] |
Meetani MA, Shin YS, Zhang SF, et al. Desorption electrospray ionization mass spectrometry of intact bacteria[J]. J Mass Spectrom, 2007, 42(9): 1186-1193.
|
[38] |
Zhang JI, Talaty N, Costa AB, et al. Rapid direct lipid profiling of bacteria using desorption electrospray ionization mass spectrometry[J]. Int J Mass Spectrom, 2011, 301(1/2/3): 37-44.
|
[39] |
Li H, Balan P, Vertes A. Molecular imaging of growth, metabolism, and antibiotic inhibition in bacterial colonies by laser ablation electrospray ionization mass spectrometry[J]. Angew Chem Int Ed Engl, 2016, 55(48): 15035-15039.
|
[40] |
Pierce CY, Barr JR, Cody RB, et al. Ambient generation of fatty acid methyl ester ions from bacterial whole cells by direct analysis in real time (DART) mass spectrometry[J]. Chem Commun, 2007(8): 807-809.
|
[41] |
So PK, Yang BC, Li W, et al. Development of tip-desorption electrospray ionization coupled with ion mobility-mass spectrometry for fast screening of carbapenemase-producing bacteria[J]. Talanta, 2019, 201: 237-244.
|
[42] |
Dean SN, Walsh C, Goodman H, et al. Analysis of mixed biofilm (Staphylococcus aureus and Pseudomonas aeruginosa) by laser ablation electrospray ionization mass spectrometry[J]. Biofouling, 2015, 31(2): 151-161.
|
[43] |
Peng B, Li H, Peng XX. Proteomics approach to understand bacterial antibiotic resistance strategies[J]. Expert Rev Proteomics, 2019, 16(10): 829-839.
|
[44] |
Chua SL, Yam JKH, Hao PL, et al. Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms[J]. Nat Commun, 2016, 7: 10750.
|
[45] |
Hao L, Yang X, Chen HL, et al. Molecular characteristics and quantitative proteomic analysis of Klebsiella pneumoniae strains with carbapenem and colistin resistance[J]. Antibiotics, 2022, 11(10): 1341.
|
[46] |
Sharma D, Garg A, Kumar M, et al. Proteome profiling of carbapenem-resistant K. pneumoniae clinical isolate (NDM-4): exploring the mechanism of resistance and potential drug targets[J]. J Proteomics, 2019, 200: 102-110.
|
[47] |
Monteiro R, Hébraud M, Chafsey I, et al. How different is the proteome of the extended spectrum β-lactamase producing Escherichia coli strains from seagulls of the Berlengas natural reserve of Portugal?[J]. J Proteomics, 2016, 145: 167-176.
|
[48] |
Balboa SJ, Hicks LM. Revealing AMP mechanisms of action through resistance evolution and quantitative proteomics[J]. Methods Enzymol, 2022, 663: 259-271.
|
[49] |
Peng JH, Cao J, Ng FM, et al. Pseudomonas aeruginosa develops Ciprofloxacin resistance from low to high level with distinctive proteome changes[J]. J Proteomics, 2017, 152: 75-87.
|
[50] |
Zampieri M, Zimmermann M, Claassen M, et al. Nontargeted metabolomics reveals the multilevel response to antibiotic perturbations[J]. Cell Rep, 2017, 19(6): 1214-1228.
|
[51] |
Liu JJ, Qi MY, Yuan ZC, et al. Nontargeted metabolomics reveals differences in the metabolite profiling among methicillin-resistant and methicillin-susceptible Staphylococcus aureus in response to antibiotics[J]. Mol Omics, 2022, 18(10): 948-956.
|
[52] |
Aros-Calt S, Muller BH, Boudah S, et al. Annotation of the Staphylococcus aureus metabolome using liquid chromatography coupled to high-resolution mass spectrometry and application to the study of methicillin resistance[J]. J Proteome Res, 2015, 14(11): 4863-4875.
|
[53] |
Li H, Xia X, Li XW, et al. Untargeted metabolomic profiling of amphenicol-resistant Campylobacter jejuni by ultra-high-performance liquid chromatography-mass spectrometry[J]. J Proteome Res, 2015, 14(2): 1060-1068.
|
[54] |
Zhang RT, Qin Q, Liu BH, et al. TiO2-assisted laser desorption/ionization mass spectrometry for rapid profiling of candidate metabolite biomarkers from antimicrobial-resistant bacteria[J]. Anal Chem, 2018, 90(6): 3863-3870.
|
[55] |
Liu SR, Peng XX, Li H. Metabolic mechanism of ceftazidime resistance in Vibrio alginolyticus[J]. Infect Drug Resist, 2019, 12: 417-429.
|
[56] |
Wright MS, Suzuki Y, Jones MB, et al. Genomic and transcriptomic analyses of colistin-resistant clinical isolates of Klebsiella pneumoniae reveal multiple pathways of resistance[J]. Antimicrob Agents Chemother, 2015, 59(1): 536-543.
|
[57] |
Cai SQ, Zhang KX, Wei F, et al. Differential proteomic and genomic comparison of resistance mechanism of Pseudomonas aeruginosa to cefoperazone sodium/sulbactam sodium[J]. An Acad Bras Cienc, 2022, 94(3):
|
[58] |
Foudraine DE, Strepis N, Stingl C, et al. Exploring antimicrobial resistance to beta-lactams, aminoglycosides and fluoroquinolones in E. coli and K. pneumoniae using proteogenomics[J]. Sci Rep, 2021, 11(1): 12472.
|
[59] |
Cheng ZX, Yang MJ, Peng B, et al. The depressed central carbon and energy metabolisms is associated to the acquisition of levofloxacin resistance in Vibrio alginolyticus[J]. J Proteomics, 2018, 181: 83-91.
|
[60] |
Yang Y, Lin Y, Qiao L. Direct MALDI-TOF MS identification of bacterial mixtures[J]. Anal Chem, 2018, 90(17): 10400-10408.
|
[61] |
Ducrée J. Special issue: microfluidic lab-on-a-chip platforms for high-performance diagnostics[J]. Diagnostics, 2012, 2(1): 1.
|
[62] |
Liu JF, Yadavali S, Tsourkas A, et al. Microfluidic diafiltration-on-chip using an integrated magnetic peristaltic micropump[J]. Lab Chip, 2017, 17(22): 3796-3803.
|
[63] |
Ohlsson P, Evander M, Petersson K, et al. Integrated acoustic separation, enrichment, and microchip polymerase chain reaction detection of bacteria from blood for rapid sepsis diagnostics[J]. Anal Chem, 2016, 88(19): 9403-9411.
|
[64] |
Hong SC, Kang JS, Lee JE, et al. Continuous aerosol size separator using inertial microfluidics and its application to airborne bacteria and viruses[J]. Lab Chip, 2015, 15(8): 1889-1897.
|
[65] |
Jing WW, Zhao W, Liu SX, et al. Microfluidic device for efficient airborne bacteria capture and enrichment[J]. Anal Chem, 2013, 85(10): 5255-5262.
|
[66] |
Pereiro I, Bendali A, Tabnaoui S, et al. A new microfluidic approach for the one-step capture, amplification and label-free quantification of bacteria from raw samples[J]. Chem Sci, 2017, 8(2): 1329-1336.
|
[67] |
Kang JH, Super M, Yung CW, et al. An extracorporeal blood-cleansing device for sepsis therapy[J]. Nat Med, 2014, 20(10): 1211-1216.
|
[68] |
Homann AR, Niebling L, Zehnle S, et al. A microfluidic cartridge for fast and accurate diagnosis of Mycobacterium tuberculosis infections on standard laboratory equipment[J]. Lab Chip, 2021, 21(8): 1540-1548.
|
[69] |
Jin JL, Duan LJ, Fu JL, et al. A real-time LAMP-based dual-sample microfluidic chip for rapid and simultaneous detection of multiple waterborne pathogenic bacteria from coastal waters[J]. Anal Methods, 2021, 13(24): 2710-2721.
|
[70] |
Krafft B, Tycova A, Urban RD, et al. Microfluidic device for concentration and SERS-based detection of bacteria in drinking water[J]. Electrophoresis, 2021, 42(1/2): 86-94.
|
[71] |
Li YX, Wang T, Wu JM. Capture and detection of urine bacteria using a microchannel silicon nanowire microfluidic chip coupled with MALDI-TOF MS[J]. Analyst, 2021, 146(4): 1151-1156.
|
[72] |
Bian XJ, Lan Y, Wang B, et al. Microfluidic air sampler for highly efficient bacterial aerosol collection and identification[J]. Anal Chem, 2016, 88(23): 11504-11512.
|
[73] |
Srikanth S, Jayapiriya US, Dubey SK, et al. A lab-on-chip platform for simultaneous culture and electrochemical detection of bacteria[J]. iScience, 2022, 25(11): 105388.
|
[74] |
Xu BL, Du Y, Lin JQ, et al. Simultaneous identification and antimicrobial susceptibility testing of multiple uropathogens on a microfluidic chip with paper-supported cell culture arrays[J]. Anal Chem, 2016, 88(23): 11593-11600.
|
[75] |
Lee WB, Fu CY, Chang WH, et al. A microfluidic device for antimicrobial susceptibility testing based on a broth dilution method[J]. Biosens Bioelectron, 2017, 87: 669-678.
|
[76] |
Ma LY, Petersen M, Lu XN. Identification and antimicrobial susceptibility testing of Campylobacter using a microfluidic lab-on-a-chip device[J]. Appl Environ Microbiol, 2020, 86(9): e00096-e00020.
|
[77] |
Ma LY, He WD, Petersen M, et al. Next-generation antimicrobial resistance surveillance system based on the internet-of-things and microfluidic technique[J]. ACS Sens, 2021, 6(9): 3477-3484.
|
[78] |
Choi J, Yoo J, Lee M, et al. A rapid antimicrobial susceptibility test based on single-cell morphological analysis[J]. Sci Transl Med, 2014, 6(267): 267ra174.
|
[79] |
Song KN, Yu ZQ, Zu XY, et al. Microfluidic chip for detection of drug resistance at the single-cell level[J]. Micromachines, 2022, 14(1): 46.
|
[80] |
Kandavalli V, Karempudi P, Larsson J, et al. Rapid antibiotic susceptibility testing and species identification for mixed samples[J]. Nat Commun, 2022, 13(1): 6215.
|
[81] |
Feng XJ, Liu BF, Li JJ, et al. Advances in coupling microfluidic chips to mass spectrometry[J]. Mass Spectrom Rev, 2015, 34(5): 535-557.
|
[82] |
Jiang Y, Wang PC, Locascio LE, et al. Integrated plastic microfluidic devices with ESI-MS for drug screening and residue analysis[J]. Anal Chem, 2001, 73(9): 2048-2053.
|
[83] |
Lee J, Musyimi HK, Soper SA, et al. Development of an automated digestion and droplet deposition microfluidic chip for MALDI-TOF MS[J]. J Am Soc Mass Spectrom, 2008, 19(7): 964-972.
|
[84] |
Dai YC, Li CY, Yi J, et al. Plasmonic colloidosome-coupled MALDI-TOF MS for bacterial heteroresistance study at single-cell level[J]. Anal Chem, 2020, 92(12): 8051-8057.
|
[85] |
Zhang DX, Zhang YJ, Yin F, et al. Microfluidic filter device coupled mass spectrometry for rapid bacterial antimicrobial resistance analysis[J]. Analyst, 2021, 146(2): 515-520.
|
[86] |
Zhang DX, Yang Y, Qin Q, et al. MALDI-TOF characterization of protein expression mutation during morphological changes of bacteria under the impact of antibiotics[J]. Anal Chem, 2019, 91(3): 2352-2359.
|
[87] |
Zhang DX, Yin F, Qin Q, et al. Molecular responses during bacterial filamentation reveal inhibition methods of drug-resistant bacteria[J]. Proc Natl Acad Sci U S A, 2023, 120(27):
|