Citation: | JIA Yifei, WANG Yamei, LI Gongyu. Recent progress of protein glycosylation characterization utilizing native conformer-resolved mass spectrometry[J]. Journal of China Pharmaceutical University, 2023, 54(6): 674-681. DOI: 10.11665/j.issn.1000-5048.2023060901 |
[1] |
. Nat Rev Mol Cell Biol, 2020, 21(12): 729-749.
|
[2] |
Reily C, Stewart TJ, Renfrow MB, et al. Glycosylation in health and disease[J]. Nat Rev Nephrol, 2019, 15(6): 346-366.
|
[3] |
Chatham JC, Zhang JH, Wende AR. Role of O-linked N-acetylglucosamine protein modification in cellular (patho)physiology[J]. Physiol Rev, 2021, 101(2): 427-493.
|
[4] |
Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications[J]. Nat Rev Cancer, 2015, 15(9): 540-555.
|
[5] |
Chang VT, Crispin M, Aricescu AR, et al. Glycoprotein structural genomics: solving the glycosylation problem[J]. Structure, 2007, 15(3): 267-273.
|
[6] |
Struwe WB, Robinson CV. Relating glycoprotein structural heterogeneity to function: insights from native mass spectrometry[J]. Curr Opin Struct Biol, 2019, 58: 241-248.
|
[7] |
Wu D, Robinson CV. Understanding glycoprotein structural heterogeneity and interactions: insights from native mass spectrometry[J]. Curr Opin Struct Biol, 2022, 74: 102351.
|
[8] |
de Haan N, Yang S, Cipollo J, et al. Glycomics studies using sialic acid derivatization and mass spectrometry[J]. Nat Rev Chem, 2020, 4(5): 229-242.
|
[9] |
Chen ZW, Huang JF, Li LJ. Recent advances in mass spectrometry (MS)-based glycoproteomics in complex biological samples[J]. Trends Analyt Chem, 2019, 118: 880-892.
|
[10] |
Ruhaak LR, Xu GG, Li QY, et al. Mass spectrometry approaches to glycomic and glycoproteomic analyses[J]. Chem Rev, 2018, 118(17): 7886-7930.
|
[11] |
Yang Y, Liu F, Franc V, et al. Hybrid mass spectrometry approaches in glycoprotein analysis and their usage in scoring biosimilarity[J]. Nat Commun, 2016, 7: 13397.
|
[12] |
?aval T, Buettner A, Haberger M, et al.Discrepancies between high-resolution native and glycopeptide-centric mass spectrometric approaches: a case study into the glycosylation of erythropoietin variants[J]. J Am Soc Mass Spectrom, 2021, 32(8): 2099-2104.
|
[13] |
Villafuerte-Vega RC, Li HW, Slaney TR, et al. Ion mobility-mass spectrometry and collision-induced unfolding of designed bispecific antibody therapeutics[J]. Anal Chem, 2023, 95(17): 6962-6970.
|
[14] |
Roberts DS, Mann M, Melby JA, et al. Structural O-glycoform heterogeneity of the SARS-CoV-2 spike protein receptor-binding domain revealed by top-down mass spectrometry[J]. J Am Chem Soc, 2021, 143(31): 12014-12024.
|
[15] |
Yen HY, Liko I, Gault J, et al. Correlating glycoforms of DC-SIGN with stability using a combination of enzymatic digestion and ion mobility mass spectrometry[J]. Angew Chem Int Ed, 2020, 59(36): 15560-15564.
|
[16] |
Ruotolo BT, Benesch JL, Sandercock AM, et al. Ion mobility-mass spectrometry analysis of large protein complexes[J]. Nat Protoc, 2008, 3(7): 1139-1152.
|
[17] |
Li GY, Phetsanthad A, Ma M, et al. Native ion mobility-mass spectrometry-enabled fast structural interrogation of labile protein surface modifications at the intact protein level[J]. Anal Chem, 2022, 94(4): 2142-2153.
|
[18] |
Zhu ZK, Desaire H. Carbohydrates on proteins: site-specific glycosylation analysis by mass spectrometry[J]. Annu Rev Anal Chem, 2015, 8: 463-483.
|
[19] |
Kawahara R, Chernykh A, Alagesan K, et al. Community evaluation of glycoproteomics informatics solutions reveals high-performance search strategies for serum glycopeptide analysis[J]. Nat Methods, 2021, 18(11): 1304-1316.
|
[20] |
Wu D, Struwe WB, Harvey DJ, et al. N-glycan microheterogeneity regulates interactions of plasma proteins[J]. Proc Natl Acad Sci U S A, 2018, 115(35): 8763-8768.
|
[21] |
Wu D, Robinson CV. Native top-down mass spectrometry reveals a role for interfacial glycans on therapeutic cytokine and hormone assemblies[J]. Angew Chem Int Ed, 2022, 61(49):
|
[22] |
El-Baba TJ, Lutomski CA, Burnap SA, et al. Uncovering the role of N-glycan occupancy on the cooperative assembly of spike and angiotensin converting enzyme 2 complexes: insights from glycoengineering and native mass spectrometry[J]. J Am Chem Soc, 2023, 145(14): 8021-8032.
|
[23] |
Laganowsky A, Reading E, Hopper JTS, et al. Mass spectrometry of intact membrane protein complexes[J]. Nat Protoc, 2013, 8(4): 639-651.
|
[24] |
Robinson CV. Mass spectrometry: from plasma proteins to mitochondrial membranes[J]. Proc Natl Acad Sci U S A, 2019, 116(8): 2814-2820.
|
[25] |
Xia X, Zhu ZJ, Li LJ, et al. Recent progress in protein stereochemical modifications revealed by ion mobility-mass spectrometry[J]. J Chin Mass Spectrom, 2022, 43(5): 580-595.
|
[26] |
Tian YW, Han LJ, Buckner AC, et al. Collision induced unfolding of intact antibodies: rapid characterization of disulfide bonding patterns, glycosylation, and structures[J]. Anal Chem, 2015, 87(22): 11509-11515.
|
[27] |
Polasky DA, Dixit SM, Fantin SM, et al. CIUSuite 2: next-generation software for the analysis of gas-phase protein unfolding data[J]. Anal Chem, 2019, 91(4): 3147-3155.
|
[28] |
Dixit SM, Polasky DA, Ruotolo BT. Collision induced unfolding of isolated proteins in the gas phase: past, present, and future[J]. Curr Opin Chem Biol, 2018, 42: 93-100.
|
[29] |
Phetsanthad A, Li GY, Jeon CK, et al. Comparing selected-ion collision induced unfolding with all ion unfolding methods for comprehensive protein conformational characterization[J]. J Am Soc Mass Spectrom, 2022, 33(6): 944-951.
|
[30] |
Polasky DA, Dixit SM, Vallejo DD, et al. An algorithm for building multi-state classifiers based on collision-induced unfolding data[J]. Anal Chem, 2019, 91(16): 10407-10412.
|
[31] |
Feng XX, Shu H, Zhang S, et al. Relative quantification of N-glycopeptide sialic acid linkage isomers by ion mobility mass spectrometry[J]. Anal Chem, 2021, 93(47): 15617-15625.
|
[32] |
Giles K, Ujma J, Wildgoose J, et al. A cyclic ion mobility-mass spectrometry system[J]. Anal Chem, 2019, 91(13): 8564-8573.
|
[33] |
Williamson DL, Bergman AE, Nagy G. Investigating the structure of α/β carbohydrate linkage isomers as a function of group I metal adduction and degree of polymerization as revealed by cyclic ion mobility separations[J]. J Am Soc Mass Spectrom, 2021, 32(10): 2573-2582.
|
[34] |
Oganesyan I, Hajduk J, Harrison JA, et al. Exploring gas-phase MS methodologies for structural elucidation of branched N-glycan isomers[J]. Anal Chem, 2022, 94(29): 10531-10539.
|
[35] |
Peterson TL, Nagy G. Toward sequencing the human milk glycome: high-resolution cyclic ion mobility separations of core human milk oligosaccharide building blocks[J]. Anal Chem, 2021, 93(27): 9397-9407.
|
[36] |
Toghi Eshghi S, Yang WM, Hu YW, et al. Classification of tandem mass spectra for identification of N- and O-linked glycopeptides[J]. Sci Rep, 2016, 6: 37189.
|
[37] |
Halim A, Westerlind U, Pett C, et al. Assignment of saccharide identities through analysis of oxonium ion fragmentation profiles in LC-MS/MS of glycopeptides[J]. J Proteome Res, 2014, 13(12): 6024-6032.
|
[38] |
Chen SY, Wu D, Robinson CV, et al. Native mass spectrometry meets glycomics: resolving structural detail and occupancy of glycans on intact glycoproteins[J]. Anal Chem, 2021, 93(30): 10435-10443.
|
[39] |
Goumenou A, Delaunay N, Pichon V. Recent advances in lectin-based affinity sorbents for protein glycosylation studies[J]. Front Mol Biosci, 2021, 8: 746822.
|
[40] |
Wu D, Li JW, Struwe WB, et al. Probing N-glycoprotein microheterogeneity by lectin affinity purification-mass spectrometry analysis[J]. Chem Sci, 2019, 10(19): 5146-5155.
|
[41] |
Tian YW, Ruotolo BT.Collision induced unfolding detects subtle differences in intact antibody glycoforms and associated fragments[J].Int J Mass Spectrom, 2018, 425: 1-9.
|
[42] |
Silsirivanit A.Glycosylation markers in cancer[J].Adv Clin Chem, 2019, 89: 189-213.
|
[43] |
Yang FJ, Hsieh CY, Shu KH, et al. Plasma leucine-rich α-2-glycoprotein 1 predicts cardiovascular disease risk in end-stage renal disease[J]. Sci Rep, 2020, 10(1): 5988.
|
[44] |
Serie DJ, Myers AA, Haehn DA, et al. Novel plasma glycoprotein biomarkers predict progression-free survival in surgically resected clear cell renal cell carcinoma[J]. Urol Oncol, 2022, 40(4): 168.e11-168.e19.
|
[45] |
Wu D, Struwe WB, Harvey DJ, et al. N-glycan microheterogeneity regulates interactions of plasma proteins[J].Proc Natl Acad Sci U S A, 2018, 115(35): 8763-8768.
|
[46] |
Peng Y, Du N, Lei YQ, et al. Structures of the SARS-CoV-2 nucleocapsid and their perspectives for drug design[J]. EMBO J, 2020, 39(20):
|
[47] |
Grant OC, Montgomery D, Ito K, et al. Analysis of the SARS-CoV-2 spike protein glycan shield reveals implications for immune recognition[J]. Sci Rep, 2020, 10(1): 14991.
|
[48] |
Rudd P, Elliott T, Cresswell P, et al. Glycosylation and the immune system[J].Science, 2001, 291(5512): 2370-2376.
|
[49] |
Starr TN, Greaney AJ, Hilton SK, et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding[J]. Cell, 2020, 182(5): 1295-1310.e20.
|
[50] |
Yan RH, Zhang YY, Li YN, et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2[J]. Science, 2020, 367(6485): 1444-1448.
|
[51] |
Gong YQ, Qin SD, Dai LZ, et al. The glycosylation in SARS-CoV-2 and its receptor ACE2[J].Signal Transduct Target Ther, 2021, 6(1): 396.
|
[52] |
Wyttenbach T, Pierson NA, Clemmer DE, et al. Ion mobility analysis of molecular dynamics[J].Annu Rev Phys Chem, 2014, 65: 175-196.
|
[53] |
Gupta K, Donlan JAC, Hopper JTS, et al. The role of interfacial lipids in stabilizing membrane protein oligomers[J]. Nature, 2017, 541(7637): 421-424.
|