Citation: | LI Mengxiao, LI Huilin. Application of biological mass spectrometry in quality control of adeno-associated virus carrier preparations[J]. Journal of China Pharmaceutical University, 2023, 54(6): 682-694. DOI: 10.11665/j.issn.1000-5048.2023062901 |
[1] |
Zhang AZ, Zhang JX, Zhang JF. Application and prospect of gene therapy for fundus vascular diseases[J]. Int Eye Sci (国际眼科杂志), 2023, 23(3): 400-406.
|
[2] |
Li MQ, Wei LP, Tao QY, et al. Application status and research progress on safety of gene therapy delivery vectors[J]. Chin J Pharm (中国医药工业杂志), 2022, 53(12): 1671-1682.
|
[3] |
Fu Q. , Polanco A. , Lee Y. S. , et al. Critical challenges and advances in recombinant adeno-associated virus (rAAV) biomanufacturing[J/OL]. Biotechnology and Bioengineering, 2023[
|
[4] |
Xu YY. Current status and challenges of gene therapy products[J]. China Biotechnol (中国生物工程杂志), 2020, 40(12): 95-103.
|
[5] |
Zhu LF, Wang ZJ. Analysis of global gene therapy drug development status[J]. Prog Pharm Sci (药学进展), 2022, 46(5): 325-338.
|
[6] |
Li YH, Li W. Advances in gene therapy for rare diseases[J]. J Rare Uncommon Dis (罕少疾病杂志), 2023, 30(3): 109-112.
|
[7] |
Large EE, Silveria MA, Zane GM, et al. Adeno-associated virus (AAV) gene delivery: dissecting molecular interactions upon cell entry[J]. Viruses, 2021, 13(7): 1336.
|
[8] |
Chen P, Zhang LJ, Li N. Progress in research on adeno-associated virus vectors[J]. Chin J Biol(中国生物制品学杂志), 2022, 35(4): 500-507.
|
[9] |
Pipe S, Leebeek FWG, Ferreira V, et al. Clinical considerations for capsid choice in the development of liver-targeted AAV-based gene transfer[J]. Mol Ther Methods Clin Dev, 2019, 15: 170-178.
|
[10] |
Mietzsch M, Jose A, Chipman P, et al. Completion of the AAV structural atlas: serotype capsid structures reveals clade-specific features[J]. Viruses, 2021, 13(1): 101.
|
[11] |
Zhao LQ, Xi B, Peng HS. Advances on research of adeno-associated virus vectors[J]. Curr Biotechnol (生物技术进展), 2012, 2(2): 110-115.
|
[12] |
Wu Y, Mei T, Jiang LY, et al. Development of versatile and flexible Sf9 packaging cell line-dependent OneBac system for large-scale recombinant adeno-associated virus production[J]. Hum Gene Ther Methods, 2019, 30(5): 172-183.
|
[13] |
Maurer AC, Pacouret S, Cepeda Diaz AK, et al. The assembly-activating protein promotes stability and interactions between AAV’s viral proteins to nucleate capsid assembly[J]. Cell Rep, 2018, 23(6): 1817-1830.
|
[14] |
Tse LV, Moller-Tank S, Meganck RM, et al. Mapping and engineering functional domains of the assembly-activating protein of adeno-associated viruses[J]. J Virol, 2018, 92(14): e00393-e00318.
|
[15] |
Maurer AC, Cepeda Diaz AK, Vandenberghe LH. Residues on adeno-associated virus capsid lumen dictate interactions and compatibility with the assembly-activating protein[J]. J Virol, 2019, 93(7): e02013-e02018.
|
[16] |
Ogden PJ, Kelsic ED, Sinai S, et al. Comprehensive AAV capsid fitness landscape reveals a viral gene and enables machine-guided design[J]. Science, 2019, 366(6469): 1139-1143.
|
[17] |
Galibert L, Hyv?nen A, Eriksson RAE, et al. Functional roles of the membrane-associated AAV protein MAAP[J]. Sci Rep, 2021, 11(1): 21698.
|
[18] |
Huang XP, Wang X, Ren YX, et al. Reactive oxygen species enhance rAAV transduction by promoting its escape from late endosomes[J]. Virol J, 2023, 20(1): 2.
|
[19] |
Hamilton BA, Wright JF. Challenges posed by immune responses to AAV vectors: addressing root causes[J]. Front Immunol, 2021, 12: 675897.
|
[20] |
Urabe M, Ding CT, Kotin RM. Insect cells as a factory to produce adeno-associated virus type 2 vectors[J]. Hum Gene Ther, 2002, 13(16): 1935-1943.
|
[21] |
Arriaga I, Navarro A, Etxabe A, et al. Cellular and structural characterization of VP1 and VP2 knockout mutants of AAV3B serotype and implications for AAV manufacturing[J]. Hum Gene Ther, 2022, 33(21/22): 1142-1156.
|
[22] |
Bosma B, du Plessis F, Ehlert E, et al. Optimization of viral protein ratios for production of rAAV serotype 5 in the baculovirus system[J]. Gene Ther, 2018, 25(6): 415-424.
|
[23] |
Salganik M, Venkatakrishnan B, Bennett A, et al. Evidence for pH-dependent protease activity in the adeno-associated virus capsid[J]. J Virol, 2012, 86(21): 11877-11885.
|
[24] |
Grieger JC, Snowdy S, Samulski RJ. Separate basic region motifs within the adeno-associated virus capsid proteins are essential for infectivity and assembly[J]. J Virol, 2006, 80(11): 5199-5210.
|
[25] |
Oyama H, Ishii K, Maruno T, et al. Characterization of adeno-associated virus capsid proteins with two types of VP3-related components by capillary gel electrophoresis and mass spectrometry[J]. Hum Gene Ther, 2021, 32(21/22): 1403-1416.
|
[26] |
Eon-Duval A, Broly H, Gleixner R. Quality attributes of recombinant therapeutic proteins: an assessment of impact on safety and efficacy as part of a quality by design development approach[J]. Biotechnol Prog, 2012, 28(3): 608-622.
|
[27] |
W?rner TP, Bennett A, Habka S, et al. Adeno-associated virus capsid assembly is divergent and stochastic[J]. Nat Commun, 2021, 12(1): 1642.
|
[28] |
Giles AR, Sims JJ, Turner KB, et al. Deamidation of amino acids on the surface of adeno-associated virus capsids leads to charge heterogeneity and altered vector function[J]. Mol Ther, 2018, 26(12): 2848-2862.
|
[29] |
Mary B, Maurya S, Arumugam S, et al. Post-translational modifications in capsid proteins of recombinant adeno-associated virus (AAV) 1-rh10 serotypes[J]. FEBS J, 2019, 286(24): 4964-4981.
|
[30] |
Zhong L, Li BZ, Jayandharan G, et al. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression[J]. Virology, 2008, 381(2): 194-202.
|
[31] |
Weger S, Hammer E, Heilbronn R. SUMO-1 modification regulates the protein stability of the large regulatory protein Rep78 of adeno associated virus type 2 (AAV-2)[J]. Virology, 2004, 330(1): 284-294.
|
[32] |
Gabriel N, Hareendran S, Sen D, et al. Bioengineering of AAV2 capsid at specific serine, threonine, or lysine residues improves its transduction efficiency in vitro and in vivo[J]. Hum Gene Ther Methods, 2013, 24(2): 80-93.
|
[33] |
Srivastava A. In vivo tissue-tropism of adeno-associated viral vectors[J]. Curr Opin Virol, 2016, 21: 75-80.
|
[34] |
Hu S, Yang LP. Expression pattern of different serotypes of adeno-associated viral vectors in mouse retina[J]. J Peking Univ Heath Sci (北京大学学报 医学版), 2020, 52(5): 845-850.
|
[35] |
Yang F, Yang Y, Wang XL, et al. Comparison of the transfection effect of different AAV serotypes in rat DRG neurons[J]. Lab Anim Sci (实验动物科学), 2020, 37(6): 66-69.
|
[36] |
Farraha M, Kizana E. Assessing recombinant AAV shedding after cardiac gene therapy[J]. Methods Mol Biol, 2022, 2573: 333-344.
|
[37] |
Hakim CH, Kumar SRP, Pérez-López D, et al. Assessment of the gene therapy immune response in the canine muscular dystrophy model[J]. Methods Mol Biol, 2023, 2587: 353-375.
|
[38] |
Boutin S, Monteilhet V, Veron P, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors[J]. Hum Gene Ther, 2010, 21(6): 704-712.
|
[39] |
Kruzik A, Fetahagic D, Hartlieb B, et al. Prevalence of anti-adeno-associated virus immune responses in international cohorts of healthy donors[J]. Mol Ther Methods Clin Dev, 2019, 14: 126-133.
|
[40] |
Heldt CL, Areo O, Joshi PU, et al. Empty and full AAV capsid charge and hydrophobicity differences measured with single-particle AFM[J]. Langmuir, 2023, 39(16): 5641-5648.
|
[41] |
Wang CL, Mulagapati SHR, Chen ZY, et al. Developing an anion exchange chromatography assay for determining empty and full capsid contents in AAV6. 2[J]. Mol Ther Methods Clin Dev, 2019, 15: 257-263.
|
[42] |
Serrano MAC, Furman R, Chen GD, et al. Mass spectrometry in gene therapy: challenges and opportunities for AAV analysis[J]. Drug Discov Today, 2023, 28(1): 103442.
|
[43] |
Mingozzi F, Anguela XM, Pavani G, et al. Overcoming preexisting humoral immunity to AAV using capsid decoys[J]. Sci Transl Med, 2013, 5(194): 194ra92.
|
[44] |
Gao K, Li MX, Zhong L, et al. Empty virions in AAV8 vector preparations reduce transduction efficiency and may cause total viral particle dose-limiting side-effects[J]. Mol Ther Methods Clin Dev, 2014, 1(9): 20139.
|
[45] |
Jin XY, Liu L, Nass S, et al. Direct liquid chromatography/mass spectrometry analysis for complete characterization of recombinant adeno-associated virus capsid proteins[J]. Hum Gene Ther Methods, 2017, 28(5): 255-267.
|
[46] |
Rogstad S, Faustino A, Ruth A, et al. A retrospective evaluation of the use of mass spectrometry in FDA biologics license applications[J]. J Am Soc Mass Spectrom, 2017, 28(5): 786-794.
|
[47] |
Chen GD, Tao L, Li ZJ. Recent advancements in mass spectrometry for higher order structure characterization of protein therapeutics[J]. Drug Discov Today, 2022, 27(1): 196-206.
|
[48] |
Liu XR, Huang RYC, Zhao FF, et al. Advances in mass spectrometry-based epitope mapping of protein therapeutics[J]. J Pharm Biomed Anal, 2022, 215: 114754.
|
[49] |
Boeri Erba E, Signor L, Petosa C. Exploring the structure and dynamics of macromolecular complexes by native mass spectrometry[J]. J Proteomics, 2020, 222: 103799.
|
[50] |
Lee K, O''Reilly FJ. Cross-linking mass spectrometry for mapping protein complex topologies in situ[J]. Essays Biochem, 2023, 67(2): 215-228.
|
[51] |
Pepelnjak M, de Souza N, Picotti P. Detecting protein-small molecule interactions using limited proteolysis-mass spectrometry (LiP-MS)[J]. Trends Biochem Sci, 2020, 45(10): 919-920.
|
[52] |
Jurga, V, Kodicek M. Limited and pulse proteolysis of human hemoglobin[J]. Chemicke Listy, 2010, 104(4): 232-235.
|
[53] |
Garcia NK, Sreedhara A, Deperalta G, et al. Optimizing hydroxyl radical footprinting analysis of biotherapeutics using internal standard dosimetry[J]. J Am Soc Mass Spectrom, 2020, 31(7): 1563-1571.
|
[54] |
Espino JA, Jones LM. In vivo hydroxyl radical protein footprinting for the study of protein interactions in Caenorhabditis elegans[J]. J Vis Exp, 2020(158): 10. 3791/60910.
|
[55] |
Tran MH, Schoeder CT, Schey KL, et al. Computational structure prediction for antibody-antigen complexes from hydrogen-deuterium exchange mass spectrometry: challenges and outlook[J]. Front Immunol, 2022, 13: 859964.
|
[56] |
Piotrowski C, Sinz A. Structural investigation of proteins and protein complexes by chemical cross-linking/mass spectrometry[M]//Advances in Experimental Medicine and Biology. Singapore: Springer Singapore, 2018: 101-121.
|
[57] |
Kurt LU, Clasen MA, Santos MDM, et al. Characterizing protein conformers by cross-linking mass spectrometry and pattern recognition[J]. Bioinformatics, 2021, 37(18): 3035-3037.
|
[58] |
Prabhu N, Dai LY, Nordlund P. CETSA in integrated proteomics studies of cellular processes[J]. Curr Opin Chem Biol, 2020, 54: 54-62.
|
[59] |
Su Q, Sena-Esteves M, Gao GP. Analysis of recombinant adeno-associated virus (rAAV) purity using silver-stained SDS-PAGE[J]. Cold Spring Harb Protoc, 2020, 2020(8):
|
[60] |
Penaud-Budloo M, Broucque F, Harrouet K, et al. Stability of the adeno-associated virus 8 reference standard material[J]. Gene Ther, 2019, 26(5): 211-215.
|
[61] |
Gurda BL, DiMattia MA, Miller EB, et al. Capsid antibodies to different adeno-associated virus serotypes bind common regions[J]. J Virol, 2013, 87(16): 9111-9124.
|
[62] |
Savelyev A, Gorbet GE, Henrickson A, et al. Moving analytical ultracentrifugation software to a good manufacturing practices (GMP) environment[J]. PLoS Comput Biol, 2020, 16(6):
|
[63] |
Lechner A, Giorgetti J, Gahoual R, et al. Insights from capillary electrophoresis approaches for characterization of monoclonal antibodies and antibody drug conjugates in the period 2016-2018[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2019, 1122/1123: 1-17.
|
[64] |
Zhang CX, Meagher MM. Highly sensitive SDS capillary gel electrophoresis with sample stacking requiring only nanograms of adeno-associated virus capsid proteins[J]. Methods Mol Biol, 2019, 1972: 263-270.
|
[65] |
Zhang XM, Jin XY, Liu L, et al. Optimized reversed-phase liquid chromatography/mass spectrometry methods for intact protein analysis and peptide mapping of adeno-associated virus proteins[J]. Hum Gene Ther, 2021, 32(23/24): 1501-1511.
|
[66] |
Zhu QF, Zhang TY, Qin LL, et al. Method to calculate the retention index in hydrophilic interaction liquid chromatography using normal fatty acid derivatives as calibrants[J]. Anal Chem, 2019, 91(9): 6057-6063.
|
[67] |
Wang F. Study on the retention mechanism in hydrophilic interaction chromatography using stoichiometric displacement theory(应用计量置换理论对亲水相互作用色谱中溶质保留机理的研究)[D]. Xi''an: Northwest University, 2015.
|
[68] |
D''Atri V, Nováková L, Fekete S, et al. Orthogonal middle-up approaches for characterization of the glycan heterogeneity of etanercept by hydrophilic interaction chromatography coupled to high-resolution mass spectrometry[J]. Anal Chem, 2019, 91(1): 873-880.
|
[69] |
Gargano AFG, Schouten O, van Schaick G, et al. Profiling of a high mannose-type N-glycosylated lipase using hydrophilic interaction chromatography-mass spectrometry[J]. Anal Chim Acta, 2020, 1109: 69-77.
|
[70] |
Ikegami T. Hydrophilic interaction chromatography for the analysis of biopharmaceutical drugs and therapeutic peptides: a review based on the separation characteristics of the hydrophilic interaction chromatography phases[J]. J Sep Sci, 2019, 42(1): 130-213.
|
[71] |
Liu AP, Patel SK, Xing T, et al. Characterization of adeno-associated virus capsid proteins using hydrophilic interaction chromatography coupled with mass spectrometry[J]. J Pharm Biomed Anal, 2020, 189: 113481.
|
[72] |
Allison TM, Bechara C. Structural mass spectrometry comes of age: new insight into protein structure, function and interactions[J]. Biochem Soc Trans, 2019, 47(1): 317-327.
|
[73] |
Boeri Erba E, Signor L, Oliva MF, et al. Characterizing intact macromolecular complexes using native mass spectrometry[M]//Protein Complex Assembly. New York, NY: Springer New York, 2018: 133-151.
|
[74] |
L?ssl P, Brunner AM, Liu F, et al. Deciphering the interplay among multisite phosphorylation, interaction dynamics, and conformational transitions in a tripartite protein system[J]. ACS Cent Sci, 2016, 2(7): 445-455.
|
[75] |
Snijder J, van de Waterbeemd M, Damoc E, et al. Defining the stoichiometry and cargo load of viral and bacterial nanoparticles by Orbitrap mass spectrometry[J]. J Am Chem Soc, 2014, 136(20): 7295-7299.
|
[76] |
Zhang Y, Wang Y, Sosic Z, et al. Identification of adeno-associated virus capsid proteins using ZipChip CE/MS[J]. Anal Biochem, 2018, 555: 22-25.
|
[77] |
Zhou Y, Wang YJ. Direct deamidation analysis of intact adeno-associated virus serotype 9 capsid proteins using reversed-phase liquid chromatography[J]. Anal Biochem, 2023, 668: 115099.
|
[78] |
Bennett A, Patel S, Mietzsch M, et al. Thermal stability as a determinant of AAV serotype identity[J]. Mol Ther Methods Clin Dev, 2017, 6: 171-182.
|
[79] |
Zarei M, Wang P, Jonveaux J, et al. A novel protocol for in-depth analysis of recombinant adeno-associated virus capsid proteins using UHPLC-MS/MS[J]. Rapid Commun Mass Spectrom, 2022, 36(6):
|
[80] |
Murray S, Nilsson CL, Hare JT, et al. Characterization of the capsid protein glycosylation of adeno-associated virus type 2 by high-resolution mass spectrometry[J]. J Virol, 2006, 80(12): 6171-6176.
|
[81] |
Lam AK, Zhang JP, Frabutt D, et al. Fast and high-throughput LC-MS characterization, and peptide mapping of engineered AAV capsids using LC-MS/MS[J]. Mol Ther Methods Clin Dev, 2022, 27: 185-194.
|
[82] |
Wu ZJ, Wang HX, Tustian A, et al. Development of a two-dimensional liquid chromatography-mass spectrometry platform for simultaneous multi-attribute characterization of adeno-associated viruses[J]. Anal Chem, 2022, 94(7): 3219-3226.
|
[83] |
Antoine R. Weighing synthetic polymers of ultra-high molar mass and polymeric nanomaterials: what can we learn from charge detection mass spectrometry[J]? Rapid Commun Mass Spectrom, 2020, 34(
|
[84] |
Barnes LF, Draper BE, Kurian J, et al. Analysis of AAV-extracted DNA by charge detection mass spectrometry reveals genome truncations[J]. Anal Chem, 2023, 95(9): 4310-4316.
|
[85] |
Lee EJ, Guenther CM, Suh J. Adeno-associated virus (AAV) vectors: rational design strategies for capsid engineering[J]. Curr Opin Biomed Eng, 2018, 7: 58-63.
|
[1] | JIA Yifei, WANG Yamei, LI Gongyu. Recent progress of protein glycosylation characterization utilizing native conformer-resolved mass spectrometry[J]. Journal of China Pharmaceutical University, 2023, 54(6): 674-681. DOI: 10.11665/j.issn.1000-5048.2023060901 |
[2] | SHI Xiaolu, QIAO Hongwei, WU Jianmei, DI Bin, WANG Youmei. Determination of dezocine and pethidine in human hair by UPLC-MS/MS[J]. Journal of China Pharmaceutical University, 2022, 53(1): 74-78. DOI: 10.11665/j.issn.1000-5048.20220111 |
[3] | WANG Jingyuan, HOU Chenzhi, HUA Zhendong, ZHANG Tingting, SU Mengxiang, XU Hui, WANG Youmei, DI Bin. Simultaneous determination of illicit drugs and their metabolites in wastewater by SPE-UPLC-MS/MS[J]. Journal of China Pharmaceutical University, 2020, 51(3): 305-312. DOI: 10.11665/j.issn.1000-5048.20200308 |
[4] | YE Hui, WANG Yun, WANG Lin, XU Xiaowei, WU Mengqiu, CAO Guoxiu, LIANG Yan, WANG Guangji. Rhein:a novel matrix for profiling and imaging of endogenous metabolites by matrix-assisted laser desorption/ionization-mass spectrometry[J]. Journal of China Pharmaceutical University, 2016, 47(6): 727-733. DOI: 10.11665/j.issn.1000-5048.20160616 |
[5] | CHEN Leilin, SONG Min, ZHANG Ge, WANG Lei, HANG Taijun. Identification of related substances in ambrisentan by LC-MS/MS[J]. Journal of China Pharmaceutical University, 2016, 47(1): 58-65. DOI: 10.11665/j.issn.1000-5048.20160108 |
[6] | QIN Fang, DING Ya, HANG Tai-jun, SONG Min. Identification of the related substances in faropenem sodium by LC-MS/MS[J]. Journal of China Pharmaceutical University, 2011, 42(4): 342-347. |
[7] | TIAN Yuan, FENG Shu-dan, HUANG Mei-hua, ZHANG Zun-jian. LC-MS/MS determination of glucocorticoids illegally added into cosmetics[J]. Journal of China Pharmaceutical University, 2011, 42(1): 53-57. |
[8] | Common issues and counterplans on LC-MS analysis of peptides and proteins in bio-samples[J]. Journal of China Pharmaceutical University, 2010, 41(5): 401-407. |
[9] | TIAN Ya-nan, YANG Jie, LIU Yan-na, WANG Qiang. Quality analysis of 3 species of Radix Paeoniae Alba cultivated in Bozhou by HPLC and LC-MS[J]. Journal of China Pharmaceutical University, 2009, 40(3): 227-231. |
[10] | Determination of Huperzine A in Beagle Dog Plasma by HPLC/MS/MS Method[J]. Journal of China Pharmaceutical University, 2004, (3): 41-44. |