Citation: | CHEN Yating, WU Yue, DENG Zixian, et al. Research progress of microneedle in promoting wound healing[J]. J China Pharm Univ, 2024, 55(4): 557 − 564. DOI: 10.11665/j.issn.1000-5048.2023082303 |
The healing process of skin wounds caused by severe mechanical trauma and chronic diseases (e.g., diabetic foot ulcers) is often accompanied by tissue injury, microbial infection, intense inflammatory reactions, hypertrophic scars, and other complications. Microneedles have been widely used to facilitate wound healing in recent years. According to their different modes of action, microneedle formulation can be categorized into five types: solid microneedles, hollow microneedles, coated microneedles, soluble microneedles, and hydrogel microneedles. This paper reviews the preparation methods and characteristics of microneedles, and summarizes their roles in hemostasis, bacteriostasis, anti-inflammation, enhancement of collagen deposition, and angiogenesis, in the hope of providing some reference for future research and development.
[1] |
Jamaledin R, Yiu CKY, Zare EN, et al. Advances in antimicrobial microneedle patches for combating infections[J]. Adv Mater, 2020, 32(33): e2002129. doi: 10.1002/adma.202002129
|
[2] |
Waghule T, Singhvi G, Dubey SK, et al. Microneedles: A smart approach and increasing potential for transdermal drug delivery system[J]. Biomed Pharmacother, 2019, 109: 1249-1258. doi: 10.1016/j.biopha.2018.10.078
|
[3] |
Su Y, Mccarthy A, Wong SL, et al. Simultaneous delivery of multiple antimicrobial agents by biphasic scaffolds for effective treatment of wound biofilms[J]. Adv Health Mater, 2021, 10(12): e2100135. doi: 10.1002/adhm.202100135
|
[4] |
Guo M, Wang Y, Gao B, et al. Shark tTooth-inspired microneedle dressing for intelligent wound management[J]. ACS Nano, 2021, 15(9): 15316-15327. doi: 10.1021/acsnano.1c06279
|
[5] |
Wang Y, Lu H, Guo M, et al. Personalized and programmable microneedle dressing for promoting wound healing[J]. Adv Healthc Mater, 2022, 11(2): e2101659. doi: 10.1002/adhm.202101659
|
[6] |
Omolu A, Bailly M, Day RM. Assessment of solid microneedle rollers to enhance transmembrane delivery of doxycycline and inhibition of MMP activity[J]. Drug Deliv, 2017, 24(1): 942-951. doi: 10.1080/10717544.2017.1337826
|
[7] |
Choi IJ, Cha HR, Hwang SJ, et al. Live Vaccinia virus-coated microneedle array patches for smallpox vaccination and stockpiling[J]. Pharmaceutics, 2021, 13(2): 209. doi: 10.3390/pharmaceutics13020209
|
[8] |
Bilal M, Mehmood S, Raza A, et al. Microneedles in smart drug delivery[J]. Adv Wound care, 2021, 10(4): 204-219. doi: 10.1089/wound.2019.1122
|
[9] |
Gualeni B, Coulman SA, Shah D, et al. Minimally invasive and targeted therapeutic cell delivery to the skin using microneedle devices[J]. Br J Dermatol, 2018, 178(3): 731-739. doi: 10.1111/bjd.15923
|
[10] |
Chen HH, Song XL, Wang YX, et al. Study and evaluation of the technology of double-chamber soluble microneedle of triptolide[J]. Chin Tradit Herb Drugs (中草药), 2022, 53(9): 2668-2677.
|
[11] |
Yuan M, Liu K, Jiang T, et al. GelMA/PEGDA microneedles patch loaded with HUVECs-derived exosomes and Tazarotene promote diabetic wound healing[J]. J Nanobiotechnology, 2022, 20(1): 147. doi: 10.1186/s12951-022-01354-4
|
[12] |
Wang P, Wang Y, Yi Y, et al. MXenes-integrated microneedle combined with asiaticoside to penetrate the cuticle for treatment of diabetic foot ulcer[J]. J Nanobiotechnology, 2022, 20(1): 259. doi: 10.1186/s12951-022-01468-9
|
[13] |
Ma CJ, He Y, Jin X, et al. Light-regulated nitric oxide release from hydrogel-forming microneedles integrated with graphene oxide for biofilm-infected-wound healing [J]. Mater Sci Eng C Mater Biol Appl, 2021: 112555.
|
[14] |
Sun L, Fan L, Bian F, et al. MXene-integrated microneedle patches with innate molecule encapsulation for wound healing[J]. Research (Wash D C), 2021, 2021: 9838490.
|
[15] |
Zhao YZ, Ning HX, Zhang YX. Research progress on traditional Chinese medicine percutaneous microneedle preparation[J]. Chin Tradit Herb Drugs (中草药), 2022, 53(08): 2550-2559.
|
[16] |
Yang L, Yang Y, Chen H, et al. Polymeric microneedle-mediated sustained release systems: design strategies and promising applications for drug delivery[J]. Asian J Pharm Sci, 2022, 17(1): 70-86. doi: 10.1016/j.ajps.2021.07.002
|
[17] |
Barnum L, Quint J, Derakhshandeh H, et al. 3D-printed hydrogel-filled microneedle arrays[J]. Adv Healthc Mater, 2021, 10(13): e2001922. doi: 10.1002/adhm.202001922
|
[18] |
Jeon EY, Lee J, Kim BJ, et al. Bio-inspired swellable hydrogel-forming double-layered adhesive microneedle protein patch for regenerative internal/external surgical closure[J]. Biomaterials, 2019, 222: 119439. doi: 10.1016/j.biomaterials.2019.119439
|
[19] |
Deng Y, Yang C, Zhu Y, et al. Lamprey-teeth-inspired oriented antibacterial sericin microneedles for infected wound healing improvement[J]. Nano Lett, 2022, 22(7): 2702-2711. doi: 10.1021/acs.nanolett.1c04573
|
[20] |
Chi J, Sun L, Cai L, et al. Chinese herb microneedle patch for wound healing[J]. Bioact Mater, 2021, 6(10): 3507-3514.
|
[21] |
Chi J, Zhang X, Chen C, et al. Antibacterial and angiogenic chitosan microneedle array patch for promoting wound healing[J]. Bioact Mater, 2020, 5(2): 253-259.
|
[22] |
Xu J, Danehy R, Cai H, et al. Microneedle patch-mediated treatment of bacterial biofilms[J]. ACS Appl Mater Interfaces, 2019, 11(16): 14640-14646. doi: 10.1021/acsami.9b02578
|
[23] |
Arshad MS, Zahra AT, Zafar S, et al. Antibiofilm effects of Macrolide loaded microneedle patches: prospects in healing infected wounds[J]. Pharm Res, 2021, 38(1): 165-177. doi: 10.1007/s11095-021-02995-0
|
[24] |
Ning T, Yang F, Chen D, et al. Synergistically detachable microneedle dressing for programmed treatment of chronic wounds[J]. Adv Healthc Mater, 2022, 11(11): e2102180. doi: 10.1002/adhm.202102180
|
[25] |
Rashki S, Asgarpour K, Tarrahimofrad H, et al. Chitosan-based nanoparticles against bacterial infections[J]. Carbohydr Polym, 2021, 251: 117108. doi: 10.1016/j.carbpol.2020.117108
|
[26] |
Yu X, Wang C, Wang Y, et al. Microneedle array patch made of Kangfuxin/chitosan/fucoidan complex enables full-thickness wound healing[J]. Front Chem, 2022, 10: 838920. doi: 10.3389/fchem.2022.838920
|
[27] |
Frydman GH, Olaleye D, Annamalai D, et al. Manuka honey microneedles for enhanced wound healing and the prevention and/or treatment of Methicillin-resistant Staphylococcus aureus (MRSA) surgical site infection[J]. Sci Rep, 2020, 10(1): 13229. doi: 10.1038/s41598-020-70186-9
|
[28] |
Chen MC, Lin ZW, Ling MH. Near-infrared light-activatable microneedle system for treating superficial tumors by combination of chemotherapy and photothermal therapy[J]. ACS Nano, 2016, 10(1): 93-101. doi: 10.1021/acsnano.5b05043
|
[29] |
Yuan YH, Shang YT, Guo JN, et al. Preparation and photothermal antibacterial properties of Zr-Fc MOF@MN composited microneedles[J]. J Funct Polym (功能高分子学报), 2022, 35(5): 1-10.
|
[30] |
Yin M, Wu J, Deng M, et al. Multifunctional magnesium organic framework-based microneedle patch for accelerating diabetic wound healing[J]. ACS Nano, 2021, 15(11): 17842-17853. doi: 10.1021/acsnano.1c06036
|
[31] |
González García le, Macgregor MN, Visalakshan RM, et al. Self-sterilizing antibacterial silver-loaded microneedles[J]. Chem Commun, 2018, 55(2): 171-174.
|
[32] |
Mir M, Permana AD, Tekko IA, et al. Microneedle liquid injection system assisted delivery of infection responsive nanoparticles: a promising approach for enhanced site-specific delivery of carvacrol against polymicrobial biofilms-infected wounds[J]. Int J Pharm, 2020, 587: 119643. doi: 10.1016/j.ijpharm.2020.119643
|
[33] |
Yang X, Jia M, Li Z, et al. In-situ synthesis silver nanoparticles in chitosan/Bletilla striata polysaccharide composited microneedles for infected and susceptible wound healing[J]. Int J Biol Macromol, 2022, 215: 550-559. doi: 10.1016/j.ijbiomac.2022.06.131
|
[34] |
Wang JQ, Wang GD, Wu Y. The review on role of reactive oxygen species in wound healing[J]. Prog Mod Biomed (现代生物医学进展), 2013, 13(31): 6194-6196.
|
[35] |
Gong JH, Chen LJ, Zhao X, et al. Persistent production of reactive oxygen species with Zn2GeO4: Cu nanorod-loaded microneedles for methicillin-resistant staphylococcus aureus infectious wound healing[J]. ACS Appl Mater Interfaces, 2022, 14(15): 17142-17152. doi: 10.1021/acsami.2c02503
|
[36] |
Wang J, Li XJ, Dou HY, et al. Skin wound healing: process and molecular mechanisms[J]. Chin J Nat(自然杂志), 2022, 44(2): 87-95.
|
[37] |
Barnum L, Samandari M, Schmidt TA, et al. Microneedle arrays for the treatment of chronic wounds[J]. Expert Opin Drug Deliv, 2020, 17(12): 1767-1780. doi: 10.1080/17425247.2020.1819787
|
[38] |
Schmitt L, Marquardt Y, Amann P, et al. Comprehensive molecular characterization of microneedling therapy in a human three-dimensional skin model[J]. PLoS One, 2018, 13(9): e0204318. doi: 10.1371/journal.pone.0204318
|
[39] |
Zhang X, Chen G, Liu Y, et al. Black phosphorus-loaded separable microneedles as responsive oxygen delivery carriers for wound healing[J]. ACS Nano, 2020, 14(5): 5901-5908. doi: 10.1021/acsnano.0c01059
|
[40] |
Yao S, Wang Y, Chi J, et al. Porous MOF microneedle array patch with photothermal responsive nitric oxide delivery for wound healing[J]. Adv Sci (Weinh), 2022, 9(3): e2103449. doi: 10.1002/advs.202103449
|
[41] |
Ma W, Zhang X, Liu Y, et al. Polydopamine decorated microneedles with fe-msc-derived nanovesicles encapsulation for wound healing[J]. Adv Sci (Weinh), 2022, 9(13): e2103317. doi: 10.1002/advs.202103317
|
[42] |
Yao S, Chi J, Wang Y, et al. Zn-MOF encapsulated antibacterial and degradable microneedles array for promoting wound healing[J]. Adv Healthc Mater, 2021, 10(12): e2100056. doi: 10.1002/adhm.202100056
|
[43] |
Yao Z, Xue T, Xiong H, et al. Promotion of collagen deposition during skin healing through Smad3/mTOR pathway by parathyroid hormone-loaded microneedle[J]. Mater Sci Eng C, Mater Biol Appl, 2021, 119: 111446. doi: 10.1016/j.msec.2020.111446
|
[44] |
Long LY, Liu W, Li L, et al. Dissolving microneedle-encapsulated drug-loaded nanoparticles and recombinant humanized collagen type III for the treatment of chronic wound via anti-inflammation and enhanced cell proliferation and angiogenesis[J]. Nanoscale, 2022, 14(4): 1285-1395. doi: 10.1039/D1NR07708B
|
[45] |
Guo Z, Liu H, Shi Z, et al. Responsive hydrogel-based microneedle dressing for diabetic wound healing[J]. J Mater Chem B, 2022, 10(18): 3501-3511. doi: 10.1039/D2TB00126H
|
[46] |
Zhang Q, Shi L, He H, et al. Down-regulating scar formation by microneedles directly via a mechanical communication pathway[J]. ACS Nano, 2022, 16(7): 10163-10178. doi: 10.1021/acsnano.1c11016
|
[47] |
Chun YY, Tan WWR, Vos MIG, et al. Scar prevention through topical delivery of gelatin-tyramine-siSPARC nanoplex loaded in dissolvable hyaluronic acid microneedle patch across skin barrier[J]. Biomater Sci, 2022, 10(14): 3963-3971. doi: 10.1039/D2BM00572G
|
[48] |
Zhan YS, Lai JH, Guo SY, et al. Pharmacodynamics and mechanistic study of tanshinone ⅡA microneedle on inhibiting hypertrophic scars[J]. Tradit Chin Drug Res Clin Pharmacol (中药新药与临床药理), 2022, 33(4): 461-467.
|