Citation: | LI Rong, YANG Ping, LI Mingjian, et al. Amelioration of dextran sulfate sodium-induced ulcerative colitis by fermented Lycium barbarum polysaccharides through modulation of intestinal microecology[J]. J China Pharm Univ, 2024, 55(2): 236 − 245. DOI: 10.11665/j.issn.1000-5048.2023082801 |
To explore the mechanism of the intestinal microecology regulation by polysaccharide prebiotics, ELISA, histopathologic analysis, immunohistochemical analysis, 16S rRNA high-throughput sequencing, and gas chromatography-mass spectrometry were applied to investigate the effects of fermented polysaccharides on changes in the intestinal microbiota and short-chain fatty acids (SCFAs) in mice with dextran sulfate sodium (DSS)-induced colitis model and their relationship with the level of intestinal inflammation and barrier protein expression. It was found that fermented Lycium barbarum polysaccharides (FLBP) significantly reduced intestinal inflammation level, improved colonic tissue structure, up-regulated the expression of tight junction proteins Claudin-1 and ZO-1, and significantly increased the content of intestinal SCFAs in mice. Gut bacteria analyses showed that FLBP enriched intestinal Dubosiella and Akkermansia in mice and decreased the abundance of Turicibacter, Faecalibaculum, and Escherichia-Shigella. Results showed that remodeled Dubosiella activated by FLBP played a dominant role in ameliorating colitis by significantly increasing SCFAs content, improving intestinal barrier and reducing intestinal inflammation. The study aimed to provide a safer and better option for the amelioration of colitis and to provide a theoretical basis for the development of functional foods with FLBP.
[1] |
Zhang TT, Mei YL, Dong WF, et al. Protective effect of staphylococcal nuclease on 2, 4, 6-trinitro-benzene sulfonic acid-induced colitis in mice[J]. J China Pharm Univ (中国药科大学学报), 2020, 51(2): 198-205.
|
[2] |
Zhou ZQ, Li J, Liu D, et al. Pharmacodynamics and mechanism of Zhuling Jianpi capsule on 2, 4, 6-trinitroben-zenesulfonic acid-induced experimental colitis in rats[J]. J China Pharm Univ (中国药科大学学报), 2023, 54(1): 107-114.
|
[3] |
Li LY, Qiu N, Meng YQ, et al. Preserved egg white alleviates DSS-induced colitis in mice through the reduction of oxidative stress, modulation of inflammatory cytokines, NF-κB, MAPK and gut microbiota composition[J]. Food Sci Hum Wellness, 2023, 12(1): 312-323. doi: 10.1016/j.fshw.2022.07.021
|
[4] |
Xue YQ, Zhang JB, Ban ZG, et al. Biological characteristics and development and utilization of Lycium barbarum[J]. Inn Mong For Investig Des (内蒙古林业调查设计), 2016, 39(3): 58-59.
|
[5] |
Qian D, Zhao YX, Yang G, et al. Systematic review of chemical constituents in the genus Lycium (Solanaceae)[J]. Molecules, 2017, 22(6): 911. doi: 10.3390/molecules22060911
|
[6] |
Kulczyński B, Gramza-Michałowska A. Goji berry (Lycium barbarum): composition and health effects—a review[J]. Pol J Food Nutr Sci, 2016, 66(2): 67-75. doi: 10.1515/pjfns-2015-0040
|
[7] |
Li L, Wang L, Fan WX, et al. The application of fermentation technology in traditional Chinese medicine: a review[J]. Am J Chin Med, 2020, 48(4): 899-921. doi: 10.1142/S0192415X20500433
|
[8] |
Wu P, Liu JQ, Dong J, et al. Improving effect of Houttuynia cordata polysaccharide on dextran sodium sulfate-induced ulcerative colitis[J]. Sci Technol Food Ind (食品工业科技), 2021, 42(23): 362-369.
|
[9] |
Cao GT, Wang KL, Li ZM, et al. Bacillus amyloliquefaciens ameliorates dextran sulfate sodium-induced colitis by improving gut microbial dysbiosis in mice model[J]. Front Microbiol, 2019, 9: 3260.
|
[10] |
O’Hara AM, Shanahan F. The gut flora as a forgotten organ[J]. EMBO Rep, 2006, 7(7): 688-693. doi: 10.1038/sj.embor.7400731
|
[11] |
Huang ZQ, Liu K, Ma WW, et al. The gut microbiome in human health and disease-Where are we and where are we going? A bibliometric analysis[J]. Front Microbiol, 2022, 13: 1018594. doi: 10.3389/fmicb.2022.1018594
|
[12] |
Lavelle A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(4): 223-237. doi: 10.1038/s41575-019-0258-z
|
[13] |
Oka A, Sartor RB. Microbial-based and microbial-targeted therapies for inflammatory bowel diseases[J]. Dig Dis Sci, 2020, 65(3): 757-788. doi: 10.1007/s10620-020-06090-z
|
[14] |
Zhai ZY, Zhang F, Cao RH, et al. Cecropin A alleviates inflammation through modulating the gut microbiota of C57BL/6 mice with DSS-induced IBD[J]. Front Microbiol, 2019, 10: 1595. doi: 10.3389/fmicb.2019.01595
|
[15] |
Wan F, Wang MY, Zhong RQ, et al. Supplementation with Chinese medicinal plant extracts from Lonicera hypoglauca and Scutellaria baicalensis mitigates colonic inflammation by regulating oxidative stress and gut microbiota in a colitis mouse model[J]. Front Cell Infect Microbiol, 2022, 11: 798052. doi: 10.3389/fcimb.2021.798052
|
[16] |
Peng L, Gao XY, Nie L, et al. Astragalin attenuates dextran sulfate sodium (DSS)-induced acute experimental colitis by alleviating gut microbiota dysbiosis and inhibiting NF-κB activation in mice[J]. Front Immunol, 2020, 11: 2058. doi: 10.3389/fimmu.2020.02058
|
[17] |
Deng QH, Wang WJ, Zhang LY, et al. Gougunao tea polysaccharides ameliorate high-fat diet-induced hyperlipidemia and modulate gut microbiota[J]. Food Funct, 2023, 14(2): 703-719. doi: 10.1039/D2FO01828D
|
[18] |
Parada Venegas D, De la Fuente MK, Landskron G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases[J]. Front Immunol, 2019, 10: 277. doi: 10.3389/fimmu.2019.00277
|
[19] |
den Besten G, van Eunen K, Groen AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism[J]. J Lipid Res, 2013, 54(9): 2325-2340. doi: 10.1194/jlr.R036012
|
[20] |
Dong F, Xiao FF, Li XL, et al. Pediococcus pentosaceus CECT 8330 protects DSS-induced colitis and regulates the intestinal microbiota and immune responses in mice[J]. J Transl Med, 2022, 20 (1): 33.
|
[21] |
Wu ZH, Huang SM, Li TT, et al. Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis[J]. Microbiome, 2021, 9(1): 184. doi: 10.1186/s40168-021-01115-9
|
[22] |
Wang HB, Wang PY, Wang X, et al. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription[J]. Dig Dis Sci, 2012, 57(12): 3126-3135. doi: 10.1007/s10620-012-2259-4
|
[23] |
Zhao Y, Chen FD, Wu W, et al. GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3[J]. Mucosal Immunol, 2018, 11(3): 752-762. doi: 10.1038/mi.2017.118
|
[24] |
Gerlach K, McKenzie AN, Neurath MF, et al. IL-9 regulates intestinal barrier function in experimental T cell-mediated colitis[J]. Tissue Barriers, 2015, 3(1/2): e983777.
|
[25] |
Ling KH, Wan MLY, El-Nezami H, et al. Protective capacity of resveratrol, a natural polyphenolic compound, against deoxynivalenol-induced intestinal barrier dysfunction and bacterial translocation[J]. Chem Res Toxicol, 2016, 29(5): 823-833. doi: 10.1021/acs.chemrestox.6b00001
|
[26] |
Martel J, Chang SH, Ko YF, et al. Gut barrier disruption and chronic disease[J]. Trends Endocrinol Metab, 2022, 33(4): 247-265. doi: 10.1016/j.tem.2022.01.002
|
[27] |
Llorente C, Jepsen P, Inamine T, et al. Gastric acid suppression promotes alcoholic liver disease by inducing overgrowth of intestinal Enterococcus[J]. Nat Commun, 2017, 8(1): 837. doi: 10.1038/s41467-017-00796-x
|
[28] |
Zhang C, Zhu HP, Jie H, et al. Arbutin ameliorated ulcerative colitis of mice induced by dextran sodium sulfate (DSS)[J]. Bioengineered, 2021, 12(2): 11707-11715. doi: 10.1080/21655979.2021.2005746
|