Citation: | LIU Chang, ZHAO Yongxin, GE Beibei, et al. Research progress on the function of ectopic olfactory receptors and their value as drug targets[J]. J China Pharm Univ, 2024, 55(3): 412 − 419. DOI: 10.11665/j.issn.1000-5048.2023092001 |
Olfactory receptors (ORs) are transmembrane proteins mainly distributed in olfactory sensory neurons of the nasal epithelium, mediating the transmission of real-time sensory signals to the brain to produce smell. Recent studies have reported that ORs can also be expressed in tissues or organs outside the nasal cavity, and are closely related to a variety of biological processes, such as sperm chemotaxis, wound healing, glycolipid metabolism and intestinal secretion. In addition, ORs are closely related to a variety of malignant tumors such as prostate cancer, breast cancer and colorectal cancer, and may affect the occurrence and development of tumors by regulating cell proliferation, apoptosis, migration and invasion. This review provides an overview of the effects of ectopic ORs on the function of various human tissues and organs and assesses their potential value as drug targets for the treatment of human diseases.
[1] |
Francia S, Lodovichi C. The role of the odorant receptors in the formation of the sensory map[J]. BMC Biol, 2021, 19(1): 174. doi: 10.1186/s12915-021-01116-y
|
[2] |
He ZW, Wang DW. Olfactory receptor 2 activation in macrophages: novel mediator of atherosclerosis progression[J]. Signal Transduct Target Ther, 2022, 7(1): 247. doi: 10.1038/s41392-022-01115-7
|
[3] |
Raka RN, Wu H, Xiao JS, et al. Human ectopic olfactory receptors and their food originated ligands: a review[J]. Crit Rev Food Sci Nutr, 2022, 62(20): 5424-5443. doi: 10.1080/10408398.2021.1885007
|
[4] |
Galibert F, Azzouzi N. Are the olfactory receptors present at the sperm membrane involved in reproduction[J]? Int J Mol Sci, 2023, 24(14): 11277. doi: 10.3390/ijms241411277
|
[5] |
Geng RX, Wang YN, Fang JJ, et al. Ectopic odorant receptors responding to flavor compounds in skin health and disease: current insights and future perspectives[J]. Crit Rev Food Sci Nutr, 2023, 63(28): 9392-9408. doi: 10.1080/10408398.2022.2064812
|
[6] |
Zhang SY, Li LH, Li HB. Role of ectopic olfactory receptors in glucose and lipid metabolism[J]. Br J Pharmacol, 2021, 178(24): 4792-4807. doi: 10.1111/bph.15666
|
[7] |
Meijerink J. The intestinal fatty acid-enteroendocrine interplay, emerging roles for olfactory signaling and serotonin conjugates[J]. Molecules, 2021, 26(5): 1416. doi: 10.3390/molecules26051416
|
[8] |
Chung C, Cho HJ, Lee C, et al. Odorant receptors in cancer[J]. BMB Rep, 2022, 55(2): 72-80. doi: 10.5483/BMBRep.2022.55.2.010
|
[9] |
Cong XJ, Ren WW, Pacalon J, et al. Large-scale G protein-coupled olfactory receptor-ligand pairing[J]. ACS Cent Sci, 2022, 8(3): 379-387. doi: 10.1021/acscentsci.1c01495
|
[10] |
Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition[J]. Cell, 1991, 65(1): 175-187. doi: 10.1016/0092-8674(91)90418-X
|
[11] |
Jimenez RC, Casajuana-Martin N, García-Recio A, et al. The mutational landscape of human olfactory G protein-coupled receptors[J]. BMC Biol, 2021, 19(1): 21. doi: 10.1186/s12915-021-00962-0
|
[12] |
Barnes IHA, Ibarra-Soria X, Fitzgerald S, et al. Expert curation of the human and mouse olfactory receptor gene repertoires identifies conserved coding regions split across two exons[J]. BMC Genomics, 2020, 21(1): 196. doi: 10.1186/s12864-020-6583-3
|
[13] |
Ali MA, Wang YH, Qin ZY, et al. Odorant and taste receptors in sperm chemotaxis and cryopreservation: roles and implications in sperm capacitation, motility and fertility[J]. Genes, 2021, 12(4): 488. doi: 10.3390/genes12040488
|
[14] |
Lee SJ, Depoortere I, Hatt H. Therapeutic potential of ectopic olfactory and taste receptors[J]. Nat Rev Drug Discov, 2019, 18(2): 116-138. doi: 10.1038/s41573-018-0002-3
|
[15] |
Feldmesser E, Olender T, Khen M, et al. Widespread ectopic expression of olfactory receptor genes[J]. BMC Genomics, 2006, 7: 121. doi: 10.1186/1471-2164-7-121
|
[16] |
Makeyeva Y, Nicol C, Ledger WL, et al. Immunocytochemical localization of olfactory-signaling molecules in human and rat spermatozoa[J]. J Histochem Cytochem, 2020, 68(7): 491-513. doi: 10.1369/0022155420939833
|
[17] |
Zhang XH, de la Cruz O, Pinto JM, et al. Characterizing the expression of the human olfactory receptor gene family using a novel DNA microarray[J]. Genome Biol, 2007, 8(5): R86. doi: 10.1186/gb-2007-8-5-r86
|
[18] |
Tong T, Wang YN, Kang SG, et al. Ectopic odorant receptor responding to flavor compounds: versatile roles in health and disease[J]. Pharmaceutics, 2021, 13(8): 1314. doi: 10.3390/pharmaceutics13081314
|
[19] |
Masjedi S, Zwiebel LJ, Giorgio TD. Olfactory receptor gene abundance in invasive breast carcinoma[J]. Sci Rep, 2019, 9(1): 13736. doi: 10.1038/s41598-019-50085-4
|
[20] |
Li M, Wang X, Ma RR, et al. The olfactory receptor family 2, subfamily T, member 6 (OR2T6) is involved in breast cancer progression via initiating epithelial-mesenchymal transition and MAPK/ERK pathway[J]. Front Oncol, 2019, 9: 1210. doi: 10.3389/fonc.2019.01210
|
[21] |
Li M, Schweiger MW, Ryan DJ, et al. Olfactory receptor 5B21 drives breast cancer metastasis[J]. iScience, 2021, 24(12): 103519. doi: 10.1016/j.isci.2021.103519
|
[22] |
Spehr M, Gisselmann G, Poplawski A, et al. Identification of a testicular odorant receptor mediating human sperm chemotaxis[J]. Science, 2003, 299(5615): 2054-2058. doi: 10.1126/science.1080376
|
[23] |
Veitinger T, Riffell JR, Veitinger S, et al. Chemosensory Ca2+ dynamics correlate with diverse behavioral phenotypes in human sperm[J]. J Biol Chem, 2011, 286(19): 17311-17325. doi: 10.1074/jbc.M110.211524
|
[24] |
Corda PO, Santiago J, Fardilha M. G-protein coupled receptors in human sperm: an in silico approach to identify potential modulatory targets[J]. Molecules, 2022, 27(19): 6503. doi: 10.3390/molecules27196503
|
[25] |
Milardi D, Colussi C, Grande G, et al. Olfactory receptors in Semen and in the male tract: from proteome to proteins[J]. Front Endocrinol, 2018, 8: 379. doi: 10.3389/fendo.2017.00379
|
[26] |
Yuan X, Wang YH, Ali MA, et al. Odorant receptor OR2C1 is an essential modulator of boar sperm capacitation by binding with heparin[J]. Int J Mol Sci, 2023, 24(2): 1664. doi: 10.3390/ijms24021664
|
[27] |
Olaniyan OT, Dare A, Okotie GE, et al. Ovarian odorant-like biomolecules in promoting chemotaxis behavior of spermatozoa olfactory receptors during migration, maturation, and fertilization[J]. Middle East Fertil Soc J, 2021, 26(1): 3. doi: 10.1186/s43043-020-00049-w
|
[28] |
Dai PY, Chen C, Yu JY, et al. New insights into sperm physiology regulation: enlightenment from G-protein-coupled receptors[J]. Andrology, 2024. doi: 10.1111/andr.13593.
|
[29] |
Teveroni E, Di Nicuolo F, Vergani E, et al. Short-chain fatty acids modulate sperm migration through olfactory receptor 51E2 activity[J]. Int J Mol Sci, 2022, 23(21): 12726. doi: 10.3390/ijms232112726
|
[30] |
Koyama S, Heinbockel T. The effects of essential oils and terpenes in relation to their routes of intake and application[J]. Int J Mol Sci, 2020, 21(5): 1558. doi: 10.3390/ijms21051558
|
[31] |
Seo J, Choi S, Kim H, et al. Association between olfactory receptors and skin physiology[J]. Ann Dermatol, 2022, 34(2): 87-94. doi: 10.5021/ad.2022.34.2.87
|
[32] |
Kim JS, Lee HL, Jeong JH, et al. OR2AT4, an ectopic olfactory receptor, suppresses oxidative stress-induced senescence in human keratinocytes[J]. Antioxidants, 2022, 11(11): 2180. doi: 10.3390/antiox11112180
|
[33] |
Jimenez F, López E, Bertolini M, et al. Topical odorant application of the specific olfactory receptor OR2AT4 agonist, Sandalore®, improves telogen effluvium-associated parameters[J]. J Cosmet Dermatol, 2021, 20(3): 784-791. doi: 10.1111/jocd.13608
|
[34] |
Kang W, Son B, Park S, et al. UV-irradiation- and inflammation-induced skin barrier dysfunction is associated with the expression of olfactory receptor genes in human keratinocytes[J]. Int J Mol Sci, 2021, 22(6): 2799. doi: 10.3390/ijms22062799
|
[35] |
Connor EE, Zhou Y, Liu GE. The essence of appetite: does olfactory receptor variation play a role[J]? J Anim Sci, 2018, 96(4): 1551-1558. doi: 10.1093/jas/sky068
|
[36] |
Liu Y, Long AJ, Chen LQ, et al. The Asprosin-OLFR734 module regulates appetitive behaviors[J]. Cell Discov, 2020, 6: 19.
|
[37] |
Wu CY, Hwang SH, Jia YY, et al. Olfactory receptor 544 reduces adiposity by steering fuel preference toward fats[J]. J Clin Invest, 2017, 127(11): 4118-4123. doi: 10.1172/JCI89344
|
[38] |
Tong T, Ryu SE, Min Y, et al. Olfactory receptor 10J5 responding to α-cedrene regulates hepatic steatosis via the cAMP-PKA pathway[J]. Sci Rep, 2017, 7(1): 9471. doi: 10.1038/s41598-017-10379-x
|
[39] |
Wu CY, Thach TT, Kim YJ, et al. Olfactory receptor 43 reduces hepatic lipid accumulation and adiposity in mice[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2019, 1864(4): 489-499.
|
[40] |
Wu CY, Jia YY, Lee JH, et al. Activation of OR1A1 suppresses PPAR-γ expression by inducing HES-1 in cultured hepatocytes[J]. Int J Biochem Cell Biol, 2015, 64: 75-80. doi: 10.1016/j.biocel.2015.03.008
|
[41] |
Tong T, Park J, Moon C, et al. Regulation of adipogenesis and thermogenesis through mouse olfactory receptor 23 stimulated by α-cedrene in 3T3-L1 cells[J]. Nutrients, 2018, 10(11): 1781. doi: 10.3390/nu10111781
|
[42] |
Yang Z, Cheng J, Shang P, et al. Emerging roles of olfactory receptors in glucose metabolism[J]. Trends Cell Biol, 2023, 33(6): 463-476. doi: 10.1016/j.tcb.2022.09.005
|
[43] |
Munakata Y, Yamada T, Imai J, et al. Olfactory receptors are expressed in pancreatic β-cells and promote glucose-stimulated insulin secretion[J]. Sci Rep, 2018, 8(1): 1499. doi: 10.1038/s41598-018-19765-5
|
[44] |
Leem J, Shim HM, Cho H, et al. Octanoic acid potentiates glucose-stimulated insulin secretion and expression of glucokinase through the olfactory receptor in pancreatic β-cells[J]. Biochem Biophys Res Commun, 2018, 503(1): 278-284. doi: 10.1016/j.bbrc.2018.06.015
|
[45] |
Cheng J, Yang Z, Ge XY, et al. Autonomous sensing of the insulin peptide by an olfactory G protein-coupled receptor modulates glucose metabolism[J]. Cell Metab, 2022, 34(2): 240-255. e10.
|
[46] |
Kim KS, Lee IS, Kim KH, et al. Activation of intestinal olfactory receptor stimulates glucagon-like peptide-1 secretion in enteroendocrine cells and attenuates hyperglycemia in type 2 diabetic mice[J]. Sci Rep, 2017, 7(1): 13978. doi: 10.1038/s41598-017-14086-5
|
[47] |
Long AJ, Liu Y, Fang XL, et al. Famsin, a novel gut-secreted hormone, contributes to metabolic adaptations to fasting via binding to its receptor OLFR796[J]. Cell Res, 2023, 33(4): 273-287. doi: 10.1038/s41422-023-00782-7
|
[48] |
Li EW, Shan HL, Chen LQ, et al. OLFR734 mediates glucose metabolism as a receptor of asprosin[J]. Cell Metab, 2019, 30(2): 319-328. e8.
|
[49] |
Wang YN, Geng RX, Zhao YH, et al. The gut odorant receptor and taste receptor make sense of dietary components: a focus on gut hormone secretion[J]. Crit Rev Food Sci Nutr, 2023: 1-15.
|
[50] |
Braun T, Voland P, Kunz L, et al. Enterochromaffin cells of the human gut: sensors for spices and odorants[J]. Gastroenterology, 2007, 132(5): 1890-1901. doi: 10.1053/j.gastro.2007.02.036
|
[51] |
Nishida A, Miyamoto J, Shimizu H, et al. Gut microbial short-chain fatty acids-mediated olfactory receptor 78 stimulation promotes anorexigenic gut hormone peptide YY secretion in mice[J]. Biochem Biophys Res Commun, 2021, 557: 48-54. doi: 10.1016/j.bbrc.2021.03.167
|
[52] |
Dinsart G, Leprovots M, Lefort A, et al. The olfactory receptor Olfr78 promotes differentiation of enterochromaffin cells in the mouse colon[J]. EMBO Rep, 2024, 25(1): 304-333.
|
[53] |
Wu CY, Jeong MY, Kim JY, et al. Activation of ectopic olfactory receptor 544 induces GLP-1 secretion and regulates gut inflammation[J]. Gut Microbes, 2021, 13(1): 1987782. doi: 10.1080/19490976.2021.1987782
|
[54] |
Kotlo K, Anbazhagan AN, Priyamvada S, et al. The olfactory G protein-coupled receptor (Olfr-78/OR51E2) modulates the intestinal response to colitis[J]. Am J Physiol Cell Physiol, 2020, 318(3): C502-C513. doi: 10.1152/ajpcell.00454.2019
|
[55] |
Wang CC, Andreasson KI. Odorant receptors in macrophages: potential targets for atherosclerosis[J]. Trends Immunol, 2022, 43(4): 262-264. doi: 10.1016/j.it.2022.02.006
|
[56] |
Swanson KV, Deng M, Ting JPY. The NLRP3 inflammasome: molecular activation and regulation to therapeutics[J]. Nat Rev Immunol, 2019, 19(8): 477-489. doi: 10.1038/s41577-019-0165-0
|
[57] |
Orecchioni M, Kobiyama K, Winkels H, et al. Olfactory receptor 2 in vascular macrophages drives atherosclerosis by NLRP3-dependent IL-1 production[J]. Science, 2022, 375(6577): 214-221. doi: 10.1126/science.abg3067
|
[58] |
Drew L. Olfactory receptors are not unique to the nose[J]. Nature, 2022, 606(7915): S14-S17. doi: 10.1038/d41586-022-01631-0
|
[59] |
Li Y, Li Q, Li DJ, et al. Exosome carrying PSGR promotes stemness and epithelial-mesenchymal transition of low aggressive prostate cancer cells[J]. Life Sci, 2021, 264: 118638. doi: 10.1016/j.lfs.2020.118638
|
[60] |
Rodriguez M, Luo W, Weng J, et al. PSGR promotes prostatic intraepithelial neoplasia and prostate cancer xenograft growth through NF-κB[J]. Oncogenesis, 2014, 3(8): e114. doi: 10.1038/oncsis.2014.29
|
[61] |
Sanz G, Leray I, Dewaele A, et al. Promotion of cancer cell invasiveness and metastasis emergence caused by olfactory receptor stimulation[J]. PLoS One, 2014, 9(1): e85110. doi: 10.1371/journal.pone.0085110
|
[62] |
Xu X, Khater M, Wu GY. The olfactory receptor OR51E2 activates ERK1/2 through the Golgi-localized Gβγ-PI3Kγ-ARF1 pathway in prostate cancer cells[J]. Front Pharmacol, 2022, 13: 1009380. doi: 10.3389/fphar.2022.1009380
|
[63] |
Rodriguez M, Siwko S, Zeng L, et al. Prostate-specific G-protein-coupled receptor collaborates with loss of PTEN to promote prostate cancer progression[J]. Oncogene, 2016, 35(9): 1153-1162. doi: 10.1038/onc.2015.170
|
[64] |
Asadi M, Ahmadi N, Ahmadvand S, et al. Investigation of olfactory receptor family 51 subfamily j member 1 (OR51J1) gene susceptibility as a potential breast cancer-associated biomarker[J]. PLoS One, 2021, 16(2): e0246752. doi: 10.1371/journal.pone.0246752
|
[65] |
Kalbe B, Schulz VM, Schlimm M, et al. Helional-induced activation of human olfactory receptor 2J3 promotes apoptosis and inhibits proliferation in a non-small-cell lung cancer cell line[J]. Eur J Cell Biol, 2017, 96(1): 34-46. doi: 10.1016/j.ejcb.2016.11.004
|
[66] |
Vadevoo SMP, Gunassekaran GR, Lee C, et al. The macrophage odorant receptor Olfr78 mediates the lactate-induced M2 phenotype of tumor-associated macrophages[J]. Proc Natl Acad Sci U S A, 2021, 118(37): e2102434118. doi: 10.1073/pnas.2102434118
|
[67] |
Weber L, Al-Refae K, Ebbert J, et al. Activation of odorant receptor in colorectal cancer cells leads to inhibition of cell proliferation and apoptosis[J]. PLoS One, 2017, 12(3): e0172491. doi: 10.1371/journal.pone.0172491
|
[68] |
Morita R, Hirohashi Y, Torigoe T, et al. Olfactory receptor family 7 subfamily C member 1 is a novel marker of colon cancer-initiating cells and is a potent target of immunotherapy[J]. Clin Cancer Res, 2016, 22(13): 3298-3309. doi: 10.1158/1078-0432.CCR-15-1709
|
[69] |
Maßberg D, Simon A, Häussinger D, et al. Monoterpene (-)-citronellal affects hepatocarcinoma cell signaling via an olfactory receptor[J]. Arch Biochem Biophys, 2015, 566: 100-109. doi: 10.1016/j.abb.2014.12.004
|
[70] |
Shibel R, Sarfstein R, Nagaraj K, et al. The olfactory receptor gene product, OR5H2, modulates endometrial cancer cells proliferation via interaction with the IGF1 signaling pathway[J]. Cells, 2021, 10(6): 1483. doi: 10.3390/cells10061483
|
[71] |
Gelis L, Jovancevic N, Bechara FG, et al. Functional expression of olfactory receptors in human primary melanoma and melanoma metastasis[J]. Exp Dermatol, 2017, 26(7): 569-576. doi: 10.1111/exd.13316
|
[72] |
Cho HJ, Koo J. Odorant G protein-coupled receptors as potential therapeutic targets for adult diffuse gliomas: a systematic analysis and review[J]. BMB Rep, 2021, 54(12): 601-607. doi: 10.5483/BMBRep.2021.54.12.165
|
[73] |
Marti-Solano M, Crilly SE, Malinverni D, et al. Combinatorial expression of GPCR isoforms affects signalling and drug responses[J]. Nature, 2020, 587(7835): 650-656. doi: 10.1038/s41586-020-2888-2
|
[74] |
Guo SM, Zhao TT, Yun Y, et al. Recent progress in assays for GPCR drug discovery[J]. Am J Physiol Cell Physiol, 2022, 323(2): C583-C594. doi: 10.1152/ajpcell.00464.2021
|
[75] |
Ache BW. Position review: functional selectivity in mammalian olfactory receptors[J]. Chem Senses, 2020, 45(7): 503-508. doi: 10.1093/chemse/bjaa046
|
[76] |
Han L, Qu QH, Aydin D, et al. Structure and mechanism of the SGLT family of glucose transporters[J]. Nature, 2022, 601(7892): 274-279. doi: 10.1038/s41586-021-04211-w
|
[77] |
Schiazza AR, Considine EG, Betcher M, et al. Loss of renal olfactory receptor 1393 leads to improved glucose homeostasis in a type 1 diabetic mouse model[J]. Physiol Rep, 2021, 9(23): e15007.
|
[78] |
Verzeaux L, Richer S, Viguier J, et al. Structure-function relationship between a natural cosmetic active ingredient and the olfactory receptor OR2AT4[J]. Int J Cosmet Sci, 2019, 41(2): 194-199. doi: 10.1111/ics.12526
|
[79] |
Edelkamp J, Lousada MB, Pinto D, et al. Application of Topical Sandalore® Increases Epidermal Dermcidin Synthesis in Organ-Cultured Human Skin ex vivo[J]. Skin Pharmacol Physiol, 2023, 36(3): 117-124. doi: 10.1159/000528402
|
[80] |
Naressi RG, Schechtman D, Malnic B. Odorant receptors as potential drug targets[J]. Trends Pharmacol Sci, 2023, 44(1): 11-14. doi: 10.1016/j.tips.2022.08.003
|
[81] |
Davenport AP, Scully CCG, de Graaf C, et al. Advances in therapeutic peptides targeting G protein-coupled receptors[J]. Nat Rev Drug Discov, 2020, 19(6): 389-413. doi: 10.1038/s41573-020-0062-z
|
[82] |
Yoshikawa K, Nakagawa H, Mori N, et al. An unsaturated aliphatic alcohol as a natural ligand for a mouse odorant receptor[J]. Nat Chem Biol, 2013, 9(3): 160-162. doi: 10.1038/nchembio.1164
|