Citation: | ZHANG Xiaomeng, FU Jinyang, HE Yanan, et al. Research progress of lysine specific demethylase 1 (LSD1) inhibitors[J]. J China Pharm Univ, 2024, 55(5): 685 − 696. DOI: 10.11665/j.issn.1000-5048.2023100701 |
Lysine specific demethylase1 (LSD1) is a flavin adenine dinucleotide (FAD)-dependent monoamine oxidase. Studies have confirmed that aberrant expression of LSD1 is closely related to tumor metastasis and proliferation, and is currently one of the important targets for tumor-targeted therapy. In addition, LSD1 is involved in the development of various conditions such as neurodegenerative diseases, cardiovascular diseases, and inflammatory responses. Currently, several inhibitors have been developed for the clinical research stage. In this paper, the structure and mechanism of action of LSD1 and the research progress of LSD1 inhibitors are briefly introduced to provide some reference for the design and development of novel LSD1 inhibitors.
[1] |
Feng S, De Carvalho DD. Clinical advances in targeting epigenetics for cancer therapy[J]. FEBS J, 2022, 289(5): 1214-1239. doi: 10.1111/febs.15750
|
[2] |
Hogg SJ, Beavis PA, Dawson MA, et al. Targeting the epigenetic regulation of antitumour immunity[J]. Nat Rev Drug Discov, 2020, 19(11): 776-800. doi: 10.1038/s41573-020-0077-5
|
[3] |
Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance[J]. Nat Rev Genet, 2012, 13(5): 343-357. doi: 10.1038/nrg3173
|
[4] |
Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1[J]. Cell, 2004, 119(7): 941-953. doi: 10.1016/j.cell.2004.12.012
|
[5] |
Yang GJ, Lei PM, Wong SY, et al. Pharmacological Inhibition of LSD1 for Cancer Treatment[J]. Molecules, 2018, 23(12): 3194. doi: 10.3390/molecules23123194
|
[6] |
Chen Y, Yang Y, Wang F, et al. Crystal structure of human histone lysine-specific demethylase 1 (LSD1)[J]. Proc Natl Acad Sci U S A, 2006, 103(38): 13956-13961. doi: 10.1073/pnas.0606381103
|
[7] |
Pilotto S, Speranzini V, Tortorici M, et al. Interplay among nucleosomal DNA, histone tails, and corepressor CoREST underlies LSD1-mediated H3 demethylation[J]. Proc Natl Acad Sci U S A, 2015, 112(9): 2752-2757. doi: 10.1073/pnas.1419468112
|
[8] |
Stavropoulos P, Blobel G, Hoelz A. Crystal structure and mechanism of human lysine-specific demethylase-1[J]. Nat Struct Mol Biol, 2006, 13(7): 626-632. doi: 10.1038/nsmb1113
|
[9] |
Yang M, Culhane JC, Szewczuk LM, et al. Structural basis of histone demethylation by LSD1 revealed by suicide inactivation[J]. Nat Struct Mol Biol, 2007, 14(6): 535-539. doi: 10.1038/nsmb1255
|
[10] |
Karasulu B, Patil M, Thiel W. Amine oxidation mediated by lysine-specific demethylase 1: quantum mechanics/molecular mechanics insights into mechanism and role of lysine 661[J]. J Am Chem Soc, 2013, 135(36): 13400-13413. doi: 10.1021/ja403582u
|
[11] |
Baron R, Binda C, Tortorici M, et al. Molecular mimicry and ligand recognition in binding and catalysis by the histone demethylase LSD1-CoREST complex[J]. Structure, 2011, 19(2): 212-220. doi: 10.1016/j.str.2011.01.001
|
[12] |
Kim SA, Zhu J, Yennawar N, et al. Crystal structure of the LSD1/CoREST histone demethylase bound to its nucleosome substrate[J]. Mol Cell, 2020, 78(5): 903-914 doi: 10.1016/j.molcel.2020.04.019
|
[13] |
Ferrarese R, Izzo A, Andrieux G, et al. ZBTB18 inhibits SREBP-dependent lipid synthesis by halting CTBPs and LSD1 activity in glioblastoma[J]. Life Sci Alliance, 2023, 6(1): e202201400. doi: 10.26508/lsa.202201400
|
[14] |
Zheng Y, Zeng Y, Qiu R, et al. The homeotic protein SIX3 suppresses carcinogenesis and metastasis through recruiting the LSD1/NuRD(MTA3) complex[J]. Theranostics, 2018, 8(4): 972-989. doi: 10.7150/thno.22328
|
[15] |
Bennesch MA, Segala G, Wider D, et al. LSD1 engages a corepressor complex for the activation of the estrogen receptor α by estrogen and cAMP[J]. Nucleic Acids Res, 2016, 44(18): 8655-8670. doi: 10.1093/nar/gkw522
|
[16] |
Wang J, Telese F, Tan Y, et al. LSD1n is an H4K20 demethylase regulating memory formation via transcriptional elongation control[J]. Nat Neurosci, 2015, 18(9): 1256-1264. doi: 10.1038/nn.4069
|
[17] |
Kim D, Kim KI, Baek SH. Roles of lysine-specific demethylase 1 (LSD1) in homeostasis and diseases[J]. J Biomed Sci, 2021, 28: 41. doi: 10.1186/s12929-021-00737-3
|
[18] |
Park JW, Bae YS. Downregulation of JMJD2a and LSD1 is involved in CK2 inhibition-mediated cellular senescence through the p53-SUV39h1 pathway[J]. BMB Rep, 2022, 55(2): 92-97. doi: 10.5483/BMBRep.2022.55.2.148
|
[19] |
Cho HS, Suzuki T, Dohmae N, et al. Demethylation of RB regulator MYPT1 by histone demethylase LSD1 promotes cell cycle progression in cancer cells[J]. Cancer Res, 2011, 71(3): 655-660. doi: 10.1158/0008-5472.CAN-10-2446
|
[20] |
Zhen H, Zhang X, Zhang L, et al. SP2509, an inhibitor of LSD1, exerts potential antitumor effects by targeting the JAK/STAT3 signaling[J]. Acta Biochim Biophys Sin, 2021, 53(8): 1098-1105. doi: 10.1093/abbs/gmab083
|
[21] |
Doi K, Murata K, Ito S, et al. Role of lysine-specific demethylase 1 in metabolically integrating osteoclast differentiation and inflammatory bone resorption through hypoxia-inducible factor 1α and E2F1α[J]. Arthritis Rheumatol, 2022, 74(6): 948-960. doi: 10.1002/art.42074
|
[22] |
Diao W, Zheng J, Li Y, et al. Targeting histone demethylases as a potential cancer therapy (Review)[J]. Int J Oncol, 2022, 61(3): 103. doi: 10.3892/ijo.2022.5393
|
[23] |
Xie Q, Tang T, Pang J, et al. LSD1 promotes bladder cancer progression by upregulating LEF1 and enhancing EMT[J]. Front Oncol, 2020, 10: 1234. doi: 10.3389/fonc.2020.01234
|
[24] |
Zhang S, Liu M, Yao Y, et al. Targeting LSD1 for acute myeloid leukemia (AML) treatment[J]. Pharmacol Res, 2021, 164: 105335. doi: 10.1016/j.phrs.2020.105335
|
[25] |
Vinyard ME, Su C, Siegenfeld AP, et al. CRISPR-suppressor scanning reveals a nonenzymatic role of LSD1 in AML[J]. Nat Chem Biol, 2019, 15(5): 529-539. doi: 10.1038/s41589-019-0263-0
|
[26] |
Chen J, Zhao J, Ding J, et al. Knocking down LSD1 inhibits the stemness features of colorectal cancer stem cells[J]. Braz J Med Biol Res, 2020, 53(7): e9230. doi: 10.1590/1414-431x20209230
|
[27] |
Zhang HS, Liu HY, Zhou Z, et al. TSPAN8 promotes colorectal cancer cell growth and migration in LSD1-dependent manner[J]. Life Sci, 2020, 241: 117114. doi: 10.1016/j.lfs.2019.117114
|
[28] |
Ding X, Zhang J, Feng Z, et al. MiR-137-3p inhibits colorectal cancer cell migration by regulating a KDM1A-dependent epithelial-mesenchymal transition[J]. Dig Dis Sci, 2021, 66(7): 2272-2282. doi: 10.1007/s10620-020-06518-6
|
[29] |
Yan W, Chung CY, Xie T, et al. Intrinsic and acquired drug resistance to LSD1 inhibitors in small cell lung cancer occurs through a TEAD4-driven transcriptional state[J]. Mol Oncol, 2022, 16(6): 1309-1328. doi: 10.1002/1878-0261.13124
|
[30] |
Wang Z, Gao S, Han D, et al. LSD1 activates PI3K/AKT signaling through regulating p85 expression in prostate cancer cells[J]. Front Oncol, 2019, 9: 721. doi: 10.3389/fonc.2019.00721
|
[31] |
Qin XK, Du Y, Liu XH, et al. LSD1 promotes prostate cancer cell survival by destabilizing FBXW7 at post-translational level[J]. Front Oncol, 2021, 10: 616185. doi: 10.3389/fonc.2020.616185
|
[32] |
Zhang L, Carnesecchi J, Cerutti C, et al. LSD1-ERRα complex requires NRF1 to positively regulate transcription and cell invasion[J]. Sci Rep, 2018, 8(1): 10041. doi: 10.1038/s41598-018-27676-8
|
[33] |
Gong Z, Li A, Ding J, et al. OTUD7B deubiquitinates LSD1 to govern its binding partner specificity, homeostasis, and breast cancer metastasis[J]. Adv Sci, 2021, 8(15): e2004504. doi: 10.1002/advs.202004504
|
[34] |
Tortorici M, Borrello MT, Tardugno M, et al. Protein recognition by short peptide reversible inhibitors of the chromatin-modifying LSD1/CoREST lysine demethylase[J]. ACS Chem Biol, 2013, 8(8): 1677-1682. doi: 10.1021/cb4001926
|
[35] |
Fang Y, Liao G, Yu B. LSD1/KDM1A inhibitors in clinical trials: advances and prospects[J]. J Hematol Oncol, 2019, 12(1): 1-14. doi: 10.1186/s13045-018-0686-1
|
[36] |
Dai XJ, Liu Y, Xiong XP, et al. Tranylcypromine based lysine-specific demethylase 1 inhibitor: summary and perspective[J]. J Med Chem, 2020, 63(23): 14197-14215. doi: 10.1021/acs.jmedchem.0c00919
|
[37] |
Itoh Y, Ogasawara D, Ota Y, et al. Synthesis, LSD1 inhibitory activity, and LSD1 binding model of optically pure lysine-PCPA conjugates[J]. Comput Struct Biotechnol J, 2014, 9: e201402002. doi: 10.5936/csbj.201402002
|
[38] |
Bauer TM, Besse B, Martinez-Marti A, et al. Phase I, open-label, dose-escalation study of the safety, pharmacokinetics, pharmacodynamics, and efficacy of GSK2879552 in relapsed/refractory SCLC[J]. J Thorac Oncol, 2019, 14(10): 1828-1838. doi: 10.1016/j.jtho.2019.06.021
|
[39] |
Maes T, Mascaró C, Tirapu I, et al. ORY-1001, a potent and selective covalent KDM1A inhibitor, for the treatment of acute leukemia[J]. Cancer Cell, 2018, 33(3): 495-511. e12. doi: 10.1016/j.ccell.2018.02.002
|
[40] |
Pettit KM, Gill H, Yacoub A, et al. A phase 2 study of the LSD1 inhibitor bomedemstat (IMG-7289) for the treatment of advanced myelofibrosis (MF): updated results and genomic analyses[J]. Blood, 2022, 140(Supplement 1): 9717-9720.
|
[41] |
Palandri F, Vianelli N, Ross DM, et al. A phase 2 study of the LSD1 inhibitor Img-7289 (bomedemstat) for the treatment of essential thrombocythemia (ET)[J]. Blood, 2021, 138: 386. doi: 10.1182/blood-2021-148210
|
[42] |
Dai XJ, Liu Y, Xue LP, et al. Reversible lysine specific demethylase 1 (LSD1) inhibitors: a promising wrench to impair LSD1[J]. J Med Chem, 2021, 64(5): 2466-2488. doi: 10.1021/acs.jmedchem.0c02176
|
[43] |
Ma L, Wang H, You Y, et al. Exploration of 5-cyano-6-phenylpyrimidin derivatives containing an 1, 2, 3-triazole moiety as potent FAD-based LSD1 inhibitors[J]. Acta Pharm Sin B, 2020, 10(9): 1658-1668. doi: 10.1016/j.apsb.2020.02.006
|
[44] |
He X, Gao Y, Hui Z, et al. 4-Hydroxy-3-methylbenzofuran-2-carbohydrazones as novel LSD1 inhibitors[J]. Bioorg Med Chem Lett, 2020, 30(10): 127109. doi: 10.1016/j.bmcl.2020.127109
|
[45] |
Dai XJ, Zhao LJ, Yang LH, et al. Phenothiazine-based LSD1 inhibitor promotes T-cell killing response of gastric cancer cells[J]. J Med Chem, 2023, 66(6): 3896-3916. doi: 10.1021/acs.jmedchem.2c01593
|
[46] |
Kanouni T, Severin C, Cho RW, et al. Discovery of CC-90011: a potent and selective reversible inhibitor of lysine specific demethylase 1 (LSD1)[J]. J Med Chem, 2020, 63(23): 14522-14529. doi: 10.1021/acs.jmedchem.0c00978
|
[47] |
Speranzini V, Rotili D, Ciossani G, et al. Polymyxins and quinazolines are LSD1/KDM1A inhibitors with unusual structural features[J]. Sci Adv, 2016, 2(9): e1601017. doi: 10.1126/sciadv.1601017
|
[48] |
Menna M, Fiorentino F, Marrocco B, et al. Novel non-covalent LSD1 inhibitors endowed with anticancer effects in leukemia and solid tumor cellular models[J]. Eur J Med Chem, 2022, 237: 114410. doi: 10.1016/j.ejmech.2022.114410
|
[49] |
Romussi A, Cappa A, Vianello P, et al. Discovery of reversible inhibitors of KDM1A efficacious in acute myeloid leukemia models[J]. ACS Med Chem Lett, 2020, 11(5): 754-759. doi: 10.1021/acsmedchemlett.9b00604
|
[1] | LI Xueyan, CHEN Na, JIANG Cheng. Research progress of KRAS inhibitors[J]. Journal of China Pharmaceutical University, 2024, 55(2): 257-269. DOI: 10.11665/j.issn.1000-5048.2024010801 |
[2] | WANG Chen, ZHANG Zhengping, LI Yinchun. Development strategy and clinical research progress of universal chimeric antigen receptor T-cell drugs[J]. Journal of China Pharmaceutical University, 2023, 54(2): 141-149. DOI: 10.11665/j.issn.1000-5048.20211125001 |
[3] | GAO Jing, MI Xue, ZHOU Qi, ZHOU Jun. Research progress of N6-methyladenine demethylase inhibitors[J]. Journal of China Pharmaceutical University, 2022, 53(6): 663-673. DOI: 10.11665/j.issn.1000-5048.20220604 |
[4] | YANG Qian, WANG Xiaojian. Research progress of sphingosine kinase 1 inhibitors[J]. Journal of China Pharmaceutical University, 2021, 52(6): 759-768. DOI: 10.11665/j.issn.1000-5048.20210615 |
[5] | LI Yin, GU Hongfeng, ZOU Yi, WANG Shuping, XU Yungen. Research progress of mono-(ADP-ribosyl) transferase family and their inhibitors in tumor therapy[J]. Journal of China Pharmaceutical University, 2021, 52(6): 643-652. DOI: 10.11665/j.issn.1000-5048.20210601 |
[6] | ZHAN Kangning, QUAN Xu, HUANG Zhangjian, ZHAO Liwen. Research progress of protein arginine methyltransferase 5 inhibitors[J]. Journal of China Pharmaceutical University, 2021, 52(3): 371-378. DOI: 10.11665/j.issn.1000-5048.20210315 |
[7] | SHI Jinyu, BAI Ying, PENG Kewen, ZHANG Wenhui, ZHU Qihua, XU Yungen. Research progress of PARP-1 inhibitors in combination with other drugs to overcome drug resistance[J]. Journal of China Pharmaceutical University, 2019, 50(5): 523-530. DOI: 10.11665/j.issn.1000-5048.20190503 |
[8] | GUO Yahui, LU Peng, WANG Yubin, ZHANG Huibin. Progress in the researches for antitumor NEDD8 activating enzyme inhibitors[J]. Journal of China Pharmaceutical University, 2017, 48(6): 646-653. DOI: 10.11665/j.issn.1000-5048.20170603 |
[9] | YAO Aihong, CHANG Yujie, JIANG Cheng, SUN Haiying. Research progress of Polo-like kinase 1 inhibitors targeting Polo-box domain[J]. Journal of China Pharmaceutical University, 2016, 47(1): 1-8. DOI: 10.11665/j.issn.1000-5048.20160101 |
[10] | Advances in the research of factor Xa inhibitors[J]. Journal of China Pharmaceutical University, 2010, 41(2): 104-111. |
1. |
刘敏,黄湘宇,吴昊,文李,程云辉,陈茂龙. 植物源抗菌肽的筛选及其在食品中的应用进展. 食品与机械. 2024(07): 200-207+215 .
![]() |