• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
BAI Xishan, DENG Chaorui, LI Yuxiao, et al. Anti-nociceptive effect and mechanism of madecassic acid[J]. J China Pharm Univ, 2024, 55(2): 230 − 235. DOI: 10.11665/j.issn.1000-5048.2023103002
Citation: BAI Xishan, DENG Chaorui, LI Yuxiao, et al. Anti-nociceptive effect and mechanism of madecassic acid[J]. J China Pharm Univ, 2024, 55(2): 230 − 235. DOI: 10.11665/j.issn.1000-5048.2023103002

Anti-nociceptive effect and mechanism of madecassic acid

Funds: This study was supported by the National Natural Science Foundation of China (No. 81960783), the Major Scientific and Technological Special Project of Yunnan Province (No. 202102AA100018), the Key Project of Yunnan Fundamental Research Program (No. 202201AS070012), and the Youth Project of Yunnan Fundamental Research Program (No. 202201AU070045)
More Information
  • Received Date: October 29, 2023
  • To date, the investigation of the functional composition of Centella asiatica (L.) Urban has been mainly focused on the triterpenoid saponins, with little research on the other compositions. The acetic acid-induced writhing, Eddy's hot plate and formalin tests were employed to investigate the anti-nociceptive effects of madecassic acid (MA). The experiment was divided into normal control group, acetylsalicylic acid (ASA) group, and the MA groups of low (10 mg/kg), medium (20 mg/kg) and high (40 mg/kg) dosage. Meanwhile, the anti-nociceptive effect of MA on the acetic acid and formalin-induced nociceptive models in the absence and presence of NAL (naloxone hydrochloride) was evaluated. To have an insight into the anti-nociceptive mechanisms of MA, the capsaicin- and glutamate-induced paw licking tests were also employed to evaluate the involvement of the vanilloid and glutamatergic systems, respectively. Results showed that MA exhibited good anti-nociceptive activity in the acetic acid-induced writhing test and the second phase of formalin test; the anti-nociceptive effect of MA in both the acetic acid and formalin-induced nociception was not effectively removed by NAL; MA (20 mg/kg and 40 mg/kg) effectively reduced the duration of biting/licking the capsaicin-injected paw with inhibition rates of 29.5% and 64.4%, respectively; MA (20 mg/kg and 40 mg/kg) distinctly shortened the time spent in biting/licking the glutamate-injected paw by 30.9% and 56.1%, respectively. In summary, MA induces significant peripheral anti-nociceptive effect, and the anti-nociceptive activities probably involve the modulation of glutamatergic systems and vanilloid systems (TRPV1) instead of the opioidergic system.

  • [1]
    Ossipov MH, Morimura K, Porreca F. Descending pain modulation and chronification of pain[J]. Curr Opin Support Palliat Care, 2014, 8(2): 143-151. doi: 10.1097/SPC.0000000000000055
    [2]
    Benyamin R, Trescot AM, Datta S, et al. Opioid complications and side effects[J]. Pain Physician, 2008, 11 (2 Suppl): S105-S120.
    [3]
    Dumas EO, Pollack GM. Opioid tolerance development: a pharmacokinetic/pharmacodynamic perspective[J]. AAPS J, 2008, 10(4): 537-551. doi: 10.1208/s12248-008-9056-1
    [4]
    Savage SR. Long-term opioid therapy: assessment of consequences and risks[J]. J Pain Symptom Manage, 1996, 11(5): 274-286. doi: 10.1016/0885-3924(95)00202-2
    [5]
    J]. Chin Wild Plant Res(中国野生植物资源), 2010, 29(3): 6-9.

    Yang Y, Ding Y, Xia Y. Advances in the study of analytic methods and pharmacological actions of Centella asiatica L
    [6]
    Kraft O, Hartmann AK, Hoenke S, et al. Madecassic acid-a new scaffold for highly cytotoxic agents[J]. Int J Mol Sci, 2022, 23(8): 4362. doi: 10.3390/ijms23084362
    [7]
    Hsu YM, Hung YC, Hu LH, et al. Anti-diabetic effects of madecassic acid and rotundic acid[J]. Nutrients, 2015, 7(12): 10065-10075. doi: 10.3390/nu7125512
    [8]
    Won JH, Shin JS, Park HJ, et al. Anti-inflammatory effects of madecassic acid via the suppression of NF-kappaB pathway in LPS-induced RAW 264.7 macrophage cells[J]. Planta Med, 2010, 76(3): 251-257. doi: 10.1055/s-0029-1186142
    [9]
    Bai XS, Li YH, Li YX, et al. Antinociceptive activity of doliroside B[J]. Pharm Biol, 2023, 61(1): 201-212. doi: 10.1080/13880209.2022.2163407
    [10]
    Ayumi RR, Mossadeq WMS, Zakaria ZA, et al. Antinociceptive activity of asiaticoside in mouse models of induced nociception[J]. Planta Med, 2020, 86(8): 548-555. doi: 10.1055/a-1144-3663
    [11]
    Wu P. Research progress on the influence of Centella asiatica (L. ) Urban on nervous system[J]. J Med Pharm Chin Minorities (中国民族医药杂志), 2009, 15(11): 71-72.
    [12]
    Berkenkopf JW, Weichman BM. Production of prostacyclin in mice following intraperitoneal injection of acetic acid, phenylbenzoquinone and zymosan: its role in the writhing response[J]. Prostaglandins, 1988, 36(5): 693-709. doi: 10.1016/0090-6980(88)90014-7
    [13]
    Shibata M, Ohkubo T, Takahashi H, et al. Modified formalin test: characteristic biphasic pain response[J]. Pain, 1989, 38(3): 347-352. doi: 10.1016/0304-3959(89)90222-4
    [14]
    Sulaiman MR, Zakaria ZA, Mohamad AS, et al. Antinociceptive and anti-inflammatory effects of the ethanol extract of Alpinia conchigera rhizomes in various animal models[J]. Pharm Biol, 2010, 48(8): 861-868. doi: 10.3109/13880200903302820
    [15]
    Jaios ES, Rahman SA, Ching SM, et al. Possible mechanisms of antinociception of methanol extract of Melastoma malabathricum leaves[J]. Rev Bras De Farmacogn, 2016, 26(5): 586-594. doi: 10.1016/j.bjp.2016.01.011
    [16]
    Sakurada T, Matsumura T, Moriyama T, et al. Differential effects of intraplantar capsazepine and ruthenium red on capsaicin-induced desensitization in mice[J]. Pharmacol Biochem Behav, 2003, 75(1): 115-121. doi: 10.1016/S0091-3057(03)00066-2
    [17]
    Cortright DN, Szallasi A. Biochemical pharmacology of the vanilloid receptor TRPV1. An update[J]. Eur J Biochem, 2004, 271(10): 1814-1819. doi: 10.1111/j.1432-1033.2004.04082.x
    [18]
    Caterina MJ, Leffler A, Malmberg AB, et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor[J]. Science, 2000, 288(5464): 306-313. doi: 10.1126/science.288.5464.306
    [19]
    Beirith A, Santos ARS, Calixto JB. Mechanisms underlying the nociception and paw oedema caused by injection of glutamate into the mouse paw[J]. Brain Res, 2002, 924(2): 219-228. doi: 10.1016/S0006-8993(01)03240-1
    [20]
    Zhuo M. Ionotropic glutamate receptors contribute to pain transmission and chronic pain[J]. Neuropharmacology, 2017, 112 (Pt A): 228-234.
  • Related Articles

    [1]ZHANG Zhixing, DENG Hua, TANG Yun. Applications and challenges of artificial intelligence in the development of anticancer peptides[J]. Journal of China Pharmaceutical University, 2024, 55(3): 347-356. DOI: 10.11665/j.issn.1000-5048.2024040201
    [2]HU Zi’ang, GAO Liming, YU Wenying. Advances in the application of artificial intelligence in nucleic acid drug development[J]. Journal of China Pharmaceutical University, 2024, 55(3): 335-346. DOI: 10.11665/j.issn.1000-5048.2024033101
    [3]ZENG Hao, WU Guozhen, ZOU Wuxin, WANG Zhe, SONG Jianfei, SHI Hui, WANG Xiaojian, HOU Tingjun, DENG Yafeng. Optimization of Menin inhibitors based on artificial intelligence-driven molecular factory technology[J]. Journal of China Pharmaceutical University, 2024, 55(3): 326-334. DOI: 10.11665/j.issn.1000-5048.2024040904
    [4]CHEN Baiyu, LYU Lunan, XU Xiaodi, ZHANG Ying, LI Wei, FU Wei. Reflections on improving drug success rates with AIDD and CADD[J]. Journal of China Pharmaceutical University, 2024, 55(3): 284-294. DOI: 10.11665/j.issn.1000-5048.2024011302
    [5]PU Chengtao, GU Lingqian, CHEN Xingye, ZHANG Yanmin. Prediction of human intestinal absorption properties based on artificial intelligence[J]. Journal of China Pharmaceutical University, 2023, 54(3): 355-362. DOI: 10.11665/j.issn.1000-5048.2023032102
    [6]XUE Feng, FENG Shuo, LI Jing. Application and prospect of artificial intelligence in antimicrobial peptides screening[J]. Journal of China Pharmaceutical University, 2023, 54(3): 314-322. DOI: 10.11665/j.issn.1000-5048.2023030901
    [7]GU Zhihao, GUO Wenhao, YAO Hequan, LI Xuanyi, LIN Kejiang. Research progress of the screening and generation of lead compounds based on artificial intelligence model[J]. Journal of China Pharmaceutical University, 2023, 54(3): 294-304. DOI: 10.11665/j.issn.1000-5048.2023042201
    [8]YU Zehao, ZHANG Leiming, ZHANG Mengna, DAI Zhiqi, PENG Chengbin, ZHENG Siming. Artificial intelligence-based drug development: current progress and future challenges[J]. Journal of China Pharmaceutical University, 2023, 54(3): 282-293. DOI: 10.11665/j.issn.1000-5048.2023041003
    [9]WANG Chao, XIAO Fu, LI Miaozhu, PAN Ying, DING Xiao, REN Feng, ZHAVORONKOV Alex, WANG Yazhou. Application progress of artificial intelligence in the screening and identification of drug targets[J]. Journal of China Pharmaceutical University, 2023, 54(3): 269-281. DOI: 10.11665/j.issn.1000-5048.2023041102
    [10]YAN Fangrong. Application and advance of artificial intelligence in biomedical field[J]. Journal of China Pharmaceutical University, 2023, 54(3): 263-268. DOI: 10.11665/j.issn.1000-5048.2023030304

Catalog

    Article views (120) PDF downloads (21) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return