• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
CHEN Xi, JIN Liang. Research progress on sumoylation in type 2 diabetes mellitus[J]. J China Pharm Univ, 2025, 56(1): 125 − 131. DOI: 10.11665/j.issn.1000-5048.2023112002
Citation: CHEN Xi, JIN Liang. Research progress on sumoylation in type 2 diabetes mellitus[J]. J China Pharm Univ, 2025, 56(1): 125 − 131. DOI: 10.11665/j.issn.1000-5048.2023112002

Research progress on sumoylation in type 2 diabetes mellitus

Funds: This study was supported by the National Natural Science Foundation of China (No.82373925,No.82070801)
More Information
  • Received Date: November 19, 2023
  • Sumoylation is a newly discovered post-translational modification, in which a small ubiquitin-like modifier (SUMO) is covalently conjugated to a lysine residue in a target protein. This provides an efficient way to modulate the activity, stability and subcellular localization of a wide variety of substrates. Sumoylation plays a key role in the occurrence and development of type 2 diabetes mellitus (T2DM). This paper addresses the relationship between sumoylation and T2DM in regulation of pancreatic β-cell function, the metabolic order in skeletal muscles, liver and other organs and diabetes-associated complications. A deeper knowledge of sumoylation may enable us to better understand the pathogenesis of T2DM and sumoylation system at the molecular level, which can help provide new ideas for the early diagnosis and subsequent treatment of T2DM and its associated complications.

  • [1]
    Mu JM, Liu Y, Zhang FF, et al. Relationship between circular RNA and type 2 diabetes and its clinical application[J]. J China Pharm Univ(中国药科大学学报), 2020, 51(3): 374-378.
    [2]
    Cloete L. Diabetes mellitus: an overview of the types, symptoms, complications and management[J]. Nurs Stand, 2022, 37(1): 61-66. doi: 10.7748/ns.2021.e11709
    [3]
    Wu Y, Chen YJ. Recent progress of functional impacts of ubiquitin-like modifications on ribosomal proteins[J]. J China Pharm Univ(中国药科大学学报), 2022, 53(5): 507-517.
    [4]
    Carmichael RE, Wilkinson KA, Craig TJ. Insulin-dependent GLUT4 trafficking is not regulated by protein SUMOylation in L6 myocytes[J]. Sci Rep, 2019, 9(1): 6477. doi: 10.1038/s41598-019-42574-3
    [5]
    Yau TY, Sander W, Eidson C, et al. SUMO interacting motifs: structure and function[J]. Cells, 2021, 10(11): 2825. doi: 10.3390/cells10112825
    [6]
    Wang W, Matunis MJ. Paralogue-specific roles of SUMO1 and SUMO2/3 in protein quality control and associated diseases[J]. Cells, 2023, 13(1): 8. doi: 10.3390/cells13010008
    [7]
    Osmanovic A, Förster A, Widjaja M, et al. A SUMO4 initiator codon variant in amyotrophic lateral sclerosis reduces SUMO4 expression and alters stress granule dynamics[J]. J Neurol, 2022, 269(9): 4863-4871. doi: 10.1007/s00415-022-11126-7
    [8]
    Vertegaal ACO. Signalling mechanisms and cellular functions of SUMO[J]. Nat Rev Mol Cell Biol, 2022, 23(11): 715-731. doi: 10.1038/s41580-022-00500-y
    [9]
    Tokarz P, Woźniak K. SENP proteases as potential targets for cancer therapy[J]. Cancers, 2021, 13(9): 2059. doi: 10.3390/cancers13092059
    [10]
    He XY, Lai QH, Chen C, et al. Both conditional ablation and overexpression of E2 SUMO-conjugating enzyme (UBC9) in mouse pancreatic beta cells result in impaired beta cell function[J]. Diabetologia, 2018, 61(4): 881-895. doi: 10.1007/s00125-017-4523-9
    [11]
    Nan JY, Lee JS, Moon JH, et al. SENP2 regulates mitochondrial function and insulin secretion in pancreatic β cells[J]. Exp Mol Med, 2022, 54(1): 72-80. doi: 10.1038/s12276-021-00723-7
    [12]
    Dai XQ, Plummer G, Casimir M, et al. SUMOylation regulates insulin exocytosis downstream of secretory granule docking in rodents and humans[J]. Diabetes, 2011, 60(3): 838-847. doi: 10.2337/db10-0440
    [13]
    Mziaut H, Trajkovski M, Kersting S, et al. Synergy of glucose and growth hormone signalling in islet cells through ICA512 and STAT5[J]. Nat Cell Biol, 2006, 8(5): 435-445. doi: 10.1038/ncb1395
    [14]
    Walters TS, McIntosh DJ, Ingram SM, et al. SUMO-modification of human Nrf2 at K110 and K533 regulates its nucleocytoplasmic localization, stability and transcriptional activity[J]. Cell Physiol Biochem, 2021, 55(2): 141-159. doi: 10.33594/000000351
    [15]
    Alfaro AJ, Dittner C, Becker J, et al. Fasting-sensitive SUMO-switch on Prox1 controls hepatic cholesterol metabolism[J]. EMBO Rep, 2023, 24(10): e55981. doi: 10.15252/embr.202255981
    [16]
    Liu Y, Dou X, Zhou WY, et al. Hepatic small ubiquitin-related modifier (SUMO)-specific protease 2 controls systemic metabolism through SUMOylation-dependent regulation of liver-adipose tissue crosstalk[J]. Hepatology, 2021, 74(4): 1864-1883. doi: 10.1002/hep.31881
    [17]
    Dou X, Zhou WY, Ding M, et al. The protease SENP2 controls hepatic gluconeogenesis by regulating the SUMOylation of the fuel sensor AMPKα[J]. J Biol Chem, 2022, 298(2): 101544. doi: 10.1016/j.jbc.2021.101544
    [18]
    Giorgino F, de Robertis O, Laviola L, et al. The sentrin-conjugating enzyme mUbc9 interacts with GLUT4 and GLUT1 glucose transporters and regulates transporter levels in skeletal muscle cells[J]. Proc Natl Acad Sci U S A, 2000, 97(3): 1125-1130. doi: 10.1073/pnas.97.3.1125
    [19]
    Koo YD, Lee JS, Lee SA, et al. SUMO-specific protease 2 mediates leptin-induced fatty acid oxidation in skeletal muscle[J]. Metabolism, 2019, 95: 27-35. doi: 10.1016/j.metabol.2019.03.004
    [20]
    Koo YD, Choi JW, Kim M, et al. SUMO-specific protease 2 (SENP2) is an important regulator of fatty acid metabolism in skeletal muscle[J]. Diabetes, 2015, 64(7): 2420-2431. doi: 10.2337/db15-0115
    [21]
    Kim D, Fiske BP, Birsoy K, et al. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance[J]. Nature, 2015, 520(7547): 363-367. doi: 10.1038/nature14363
    [22]
    Cox AR, Chernis N, Kim KH, et al. Ube2i deletion in adipocytes causes lipoatrophy in mice[J]. Mol Metab, 2021, 48: 101221. doi: 10.1016/j.molmet.2021.101221
    [23]
    Wang TS, Cao Y, Zheng Q, et al. SENP1-Sirt3 signaling controls mitochondrial protein acetylation and metabolism[J]. Mol Cell, 2019, 75(4): 823-834. e5.
    [24]
    Mikkonen L, Hirvonen J, Jänne OA. SUMO-1 regulates body weight and adipogenesis via PPARγ in male and female mice[J]. Endocrinology, 2013, 154(2): 698-708. doi: 10.1210/en.2012-1846
    [25]
    Chen QB, Huang L, Pan DN, et al. Cbx4 sumoylates Prdm16 to regulate adipose tissue thermogenesis[J]. Cell Rep, 2018, 22(11): 2860-2872. doi: 10.1016/j.celrep.2018.02.057
    [26]
    Hu JL, Xue PC, Mao XB, et al. SUMO1/UBC9-decreased Nox1 activity inhibits reactive oxygen species generation and apoptosis in diabetic retinopathy[J]. Mol Med Rep, 2018, 17(1): 1690-1698.
    [27]
    Chen M, Zhang QH, Wang S, et al. Inhibition of diabetes-induced Drp1 deSUMOylation prevents retinal vascular lesions associated with diabetic retinopathy[J]. Exp Eye Res, 2023, 226: 109334. doi: 10.1016/j.exer.2022.109334
    [28]
    Zhang W, Li F, Hou JH, et al. Aberrant SUMO2/3 modification of RUNX1 upon SENP1 inhibition is linked to the development of diabetic retinopathy in mice[J]. Exp Eye Res, 2023, 237: 109695. doi: 10.1016/j.exer.2023.109695
    [29]
    Bakris GL, Agarwal R, Anker SD, et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes[J]. N Engl J Med, 2020, 383(23): 2219-2229. doi: 10.1056/NEJMoa2025845
    [30]
    Guo F, Song Y, Wu LN, et al. SUMO specific peptidase 6 regulates the crosstalk between podocytes and glomerular endothelial cells in diabetic kidney disease[J]. Biochim Biophys Acta Mol Basis Dis, 2023, 1869(5): 166685. doi: 10.1016/j.bbadis.2023.166685
    [31]
    Liu J, Wu ZS, Han D, et al. Mesencephalic astrocyte-derived neurotrophic factor inhibits liver cancer through small ubiquitin-related modifier (SUMO)ylation-related suppression of NF-κB/snail signaling pathway and epithelial-mesenchymal transition[J]. Hepatology, 2020, 71(4): 1262-1278. doi: 10.1002/hep.30917
    [32]
    Wang LY, Zhu JW, Fang M, et al. Inhibition of p53 deSUMOylation exacerbates puromycin aminonucleoside-induced apoptosis in podocytes[J]. Int J Mol Sci, 2014, 15(11): 21314-21330. doi: 10.3390/ijms151121314
    [33]
    Chang E, Abe JI. Kinase-SUMO networks in diabetes-mediated cardiovascular disease[J]. Metabolism, 2016, 65(5): 623-633. doi: 10.1016/j.metabol.2016.01.007
    [34]
    Shishido T, Woo CH, Ding B, et al. Effects of MEK5/ERK5 association on small ubiquitin-related modification of ERK5: implications for diabetic ventricular dysfunction after myocardial infarction[J]. Circ Res, 2008, 102(11): 1416-1425. doi: 10.1161/CIRCRESAHA.107.168138
    [35]
    Gupta MK, McLendon PM, Gulick J, et al. UBC9-mediated sumoylation favorably impacts cardiac function in compromised hearts[J]. Circ Res, 2016, 118(12): 1894-1905. doi: 10.1161/CIRCRESAHA.115.308268
  • Related Articles

    [1]NING Manru, XU Kehui, HANG Taijun, SONG Min. Separation and identification of folic acid and its related substances by liquid chromatography-mass spectrometry[J]. Journal of China Pharmaceutical University, 2025, 56(1): 56-64. DOI: 10.11665/j.issn.1000-5048.2024052201
    [2]TANG Xiaohang, SONG Huilin, YAO Liying, QIN Guowen, WANG Xingchen, LIU Wenyuan, JI Shunli. Determination of non-steroidal anti-inflammatory drugs in the environmental water samples by a polyvinylimide-modified magnetic nanoparticles-based solid phase extraction coupled with high-performance liquid chromatography[J]. Journal of China Pharmaceutical University, 2024, 55(4): 485-492. DOI: 10.11665/j.issn.1000-5048.2023081802
    [3]ZHANG Qian, HUANG Minwen, FANG Wang, ZHANG Mei, HANG Taijun, YUAN Yaozuo. Determination of the content and related substances of neomycin sulfate by HPLC combined with pulsed amperometric detection[J]. Journal of China Pharmaceutical University, 2019, 50(2): 193-199. DOI: 10.11665/j.issn.1000-5048.20190210
    [4]XU Dejin, YUAN Wenbo, LYU Juan. Determination of vancomycin in human serum by in situ formed ionic liquids microextraction-ultra performance liquid chromatography(ISFILM-UPLC)methods[J]. Journal of China Pharmaceutical University, 2017, 48(2): 196-200. DOI: 10.11665/j.issn.1000-5048.20170210
    [5]YUAN Wenbo, DING Yongjuan, XU Jingjing. Determination of 5-fluorouracil in serum by direct protein precipitation-ultra performance liquid chromatography[J]. Journal of China Pharmaceutical University, 2015, 46(1): 81-84. DOI: 10.11665/j.issn.1000-5048.20150111
    [6]LIU Yongli, ZHAO Zhenxia, LI Dongmei, FENG Li. Simultaneous determination of seven components in Huoxiang Zhengqi liquid by ultra-performance liquid chromatography[J]. Journal of China Pharmaceutical University, 2013, 44(3): 249-252. DOI: 10.11665/j.issn.1000-5048.20130312
    [7]Study on Main Related Substance and Photodecomposed Product in Chloroprocaine Hydrochloride Injection[J]. Journal of China Pharmaceutical University, 2002, (1): 37-39.
    [8]HPLC Determination of Nicardipine in Human Plasma and Its Pharmacokinetic Parameters[J]. Journal of China Pharmaceutical University, 1998, (3): 47-50.
    [9]High Performance Liquid Chromatographic Simultaneous Determination of Trimethoprim, Spulphamethoxazole and Acetylsulphamethoxazole in Biological Fluids[J]. Journal of China Pharmaceutical University, 1993, (6): 348-350.
    [10]Quantitative Determination of Bendazac Lysine By RP-HPLC[J]. Journal of China Pharmaceutical University, 1992, (5): 307-309.

Catalog

    Article views (26) PDF downloads (8) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return