• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
WANG Zhijie, LIAO Xiaotong, GUO Xia, et al. New strategies for targeting PD-1/PD-L1: degraders, bifunctional molecules and covalent inhibitors[J]. J China Pharm Univ, 2024, 55(1): 5 − 14. DOI: 10.11665/j.issn.1000-5048.2023112702
Citation: WANG Zhijie, LIAO Xiaotong, GUO Xia, et al. New strategies for targeting PD-1/PD-L1: degraders, bifunctional molecules and covalent inhibitors[J]. J China Pharm Univ, 2024, 55(1): 5 − 14. DOI: 10.11665/j.issn.1000-5048.2023112702

New strategies for targeting PD-1/PD-L1: degraders, bifunctional molecules and covalent inhibitors

Funds: This study was supported by the National Natural Science Foundation of China (No. 82173668,No.82373706)
More Information
  • Received Date: November 26, 2023
  • Available Online: March 05, 2024
  • Programmed cell death protein-1 (PD-1) / programmed cell death ligand-1 (PD-L1) has been considered to be one of the most promising targets for tumor immunotherapy. At present, both monoclonal antibody drugs and small molecule inhibitors targeting PD-1/PD-L1 are facing bottlenecks. Numerous researchers have tried to explore different strategies to block the PD-L1/PD-L1 pathway, hoping to improve the effects of tumor immunotherapy. This review focuses on the degraders, bifunctional molecules and covalent inhibitors that target PD-L1, aiming to provide inspiring insights for the development of anti-PD-1/PD-L1 drugs.

  • [1]
    Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73: 17-48. doi: 10.3322/caac.21763
    [2]
    Ugai T, Sasamoto N, Lee HY, et al. Is early-onset cancer an emerging global epidemic? Current evidence and future implications[J]. Nat Rev Clin Oncol, 2022, 19(10): 656-673. doi: 10.1038/s41571-022-00672-8
    [3]
    Zhang YY, Zhang ZM. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications[J]. Cell Mol Immunol, 2020, 17(8): 807-821. doi: 10.1038/s41423-020-0488-6
    [4]
    Fang YL, Yu AH, Ye L, et al. Research progress in tumor targeted immunotherapy[J]. Expert Opin Drug Deliv, 2021, 18(8): 1067-1090. doi: 10.1080/17425247.2021.1882992
    [5]
    Lee YT, Tan YJ, Oon CE. Molecular targeted therapy: treating cancer with specificity[J]. Eur J Pharmacol, 2018, 834: 188-196. doi: 10.1016/j.ejphar.2018.07.034
    [6]
    Rui R, Zhou LQ, He SM. Cancer immunotherapies: advances and bottlenecks[J]. Front Immunol, 2023, 14: 1212476. doi: 10.3389/fimmu.2023.1212476
    [7]
    Tan SZ, Li DP, Zhu X. Cancer immunotherapy: pros, cons and beyond[J]. Biomed Pharmacother, 2020, 124: 109821. doi: 10.1016/j.biopha.2020.109821
    [8]
    Wu YR, Yang ZC, Cheng K, et al. Small molecule-based immunomodulators for cancer therapy[J]. Acta Pharm Sin B, 2022, 12(12): 4287-4308. doi: 10.1016/j.apsb.2022.11.007
    [9]
    Lin QY, Wang XW, Hu Y. The opportunities and challenges in immunotherapy: insights from the regulation of PD-L1 in cancer cells[J]. Cancer Lett, 2023, 569: 216318. doi: 10.1016/j.canlet.2023.216318
    [10]
    Wu Q, Jiang L, Li SC, et al. Small molecule inhibitors targeting the PD-1/PD-L1 signaling pathway[J]. Acta Pharmacol Sin, 2021, 42(1): 1-9. doi: 10.1038/s41401-020-0366-x
    [11]
    Chen WS, Huang Y, Pan WT, et al. Strategies for developing PD-1 inhibitors and future directions[J]. Biochem Pharmacol, 2022, 202: 115113. doi: 10.1016/j.bcp.2022.115113
    [12]
    Ghosh C, Luong G, Sun Y. A snapshot of the PD-1/PD-L1 pathway[J]. J Cancer, 2021, 12(9): 2735-2746. doi: 10.7150/jca.57334
    [13]
    Zhao X, Bao YL, Meng B, et al. From rough to precise: PD-L1 evaluation for predicting the efficacy of PD-1/PD-L1 blockades[J]. Front Immunol, 2022, 13: 920021. doi: 10.3389/fimmu.2022.920021
    [14]
    Yi M, Zheng XL, Niu MK, et al. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions[J]. Mol Cancer, 2022, 21(1): 28. doi: 10.1186/s12943-021-01489-2
    [15]
    Cheng BB, Xiao Y, Xue MM, et al. Recent advances in the development of PD-L1 modulators: degraders, downregulators, and covalent inhibitors[J]. J Med Chem, 2020, 63(24): 15389-15398. doi: 10.1021/acs.jmedchem.0c01362
    [16]
    Zou W, Luo X, Gao MY, et al. Optimization of cancer immunotherapy on the basis of programmed death ligand-1 distribution and function[J]. Br J Pharmacol, 2023.
    [17]
    Yang J, Hu LQ. Immunomodulators targeting the PD-1/PD-L1 protein-protein interaction: from antibodies to small molecules[J]. Med Res Rev, 2019, 39(1): 265-301. doi: 10.1002/med.21530
    [18]
    Jiang MZ, Liu M, Liu GD, et al. Advances in the structural characterization of complexes of therapeutic antibodies with PD-1 or PD-L1[J]. MAbs, 2023, 15(1): 2236740. doi: 10.1080/19420862.2023.2236740
    [19]
    Sasmal P, Kumar Babasahib S, Prashantha Kumar BR, et al. Biphenyl-based small molecule inhibitors: novel cancer immunotherapeutic agents targeting PD-1/PD-L1 interaction[J]. Bioorg Med Chem, 2022, 73: 117001. doi: 10.1016/j.bmc.2022.117001
    [20]
    Song ZL, Liu B, Peng X, et al. Design, synthesis, and pharmacological evaluation of biaryl-containing PD-1/PD-L1 interaction inhibitors bearing a unique difluoromethyleneoxy linkage[J]. J Med Chem, 2021, 64(22): 16687-16702. doi: 10.1021/acs.jmedchem.1c01422
    [21]
    Sun CL, Cheng Y, Liu XJ, et al. Novel phthalimides regulating PD-1/PD-L1 interaction as potential immunotherapy agents[J]. Acta Pharm Sin B, 2022, 12(12): 4446-4457. doi: 10.1016/j.apsb.2022.04.007
    [22]
    Shaabani S, Huizinga HPS, Butera R, et al. A patent review on PD-1/PD-L1 antagonists: small molecules, peptides, and macrocycles (2015-2018)[J]. Expert Opin Ther Pat, 2018, 28(9): 665-678. doi: 10.1080/13543776.2018.1512706
    [23]
    Zak KM, Grudnik P, Guzik K, et al. Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1)[J]. Oncotarget, 2016, 7(21): 30323-30335. doi: 10.18632/oncotarget.8730
    [24]
    Wu ML, Huang QR, Xie Y, et al. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation[J]. J Hematol Oncol, 2022, 15(1): 24. doi: 10.1186/s13045-022-01242-2
    [25]
    Sun JY, Zhang DK, Wu SQ, et al. Resistance to PD-1/PD-L1 blockade cancer immunotherapy: mechanisms, predictive factors, and future perspectives[J]. Biomark Res, 2020, 8: 35. doi: 10.1186/s40364-020-00212-5
    [26]
    Yuan Y, Adam A, Zhao C, et al. Recent advancements in the mechanisms underlying resistance to PD-1/PD-L1 blockade immunotherapy[J]. Cancers, 2021, 13(4): 663. doi: 10.3390/cancers13040663
    [27]
    Pang K, Shi ZD, Wei LY, et al. Research progress of therapeutic effects and drug resistance of immunotherapy based on PD-1/PD-L1 blockade[J]. Drug Resist Updat, 2023, 66: 100907. doi: 10.1016/j.drup.2022.100907
    [28]
    Tang Q, Chen Y, Li XJ, et al. The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers[J]. Front Immunol, 2022, 13: 964442. doi: 10.3389/fimmu.2022.964442
    [29]
    Xue Y, Bolinger AA, Zhou J. Novel approaches to targeted protein degradation technologies in drug discovery[J]. Expert Opin Drug Discov, 2023, 18(4): 467-483. doi: 10.1080/17460441.2023.2187777
    [30]
    Cheng BB, Ren YC, Cao H, et al. Discovery of novel resorcinol diphenyl ether-based PROTAC-like molecules as dual inhibitors and degraders of PD-L1[J]. Eur J Med Chem, 2020, 199: 112377. doi: 10.1016/j.ejmech.2020.112377
    [31]
    Wang YB, Zhou YY, Cao S, et al. In vitro and in vivo degradation of programmed cell death ligand 1 (PD-L1) by a proteolysis targeting chimera (PROTAC)[J]. Bioorg Chem, 2021, 111: 104833. doi: 10.1016/j.bioorg.2021.104833
    [32]
    Liu Y, Zheng MZ, Ma ZL, et al. Design, synthesis, and evaluation of PD-L1 degraders to enhance T cell killing activity against melanoma[J]. Chin Chem Lett, 2023, 34(5): 107762. doi: 10.1016/j.cclet.2022.107762
    [33]
    Su W, Tan MX, Wang ZH, et al. Targeted degradation of PD-L1 and activation of the STING pathway by carbon-dot-based PROTACs for cancer immunotherapy[J]. Angew Chem Int Ed, 2023, 62(11): e202218128. doi: 10.1002/anie.202218128
    [34]
    Cotton AD, Nguyen DP, Gramespacher JA, et al. Development of antibody-based PROTACs for the degradation of the cell-surface immune checkpoint protein PD-L1[J]. J Am Chem Soc, 2021, 143(2): 593-598. doi: 10.1021/jacs.0c10008
    [35]
    Banik SM, Pedram K, Wisnovsky S, et al. Lysosome-targeting chimaeras for degradation of extracellular proteins[J]. Nature, 2020, 584(7820): 291-297. doi: 10.1038/s41586-020-2545-9
    [36]
    Zheng JW, He WY, Li J, et al. Bifunctional compounds as molecular degraders for integrin-facilitated targeted protein degradation[J]. J Am Chem Soc, 2022, 144(48): 21831-21836. doi: 10.1021/jacs.2c08367
    [37]
    Mousavi A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy[J]. Immunol Lett, 2020, 217: 91-115. doi: 10.1016/j.imlet.2019.11.007
    [38]
    Zhou WQ, Guo SC, Liu ML, et al. Targeting CXCL12/CXCR4 axis in tumor immunotherapy[J]. Curr Med Chem, 2019, 26(17): 3026-3041. doi: 10.2174/0929867324666170830111531
    [39]
    Mehrpouri M. The contributory roles of the CXCL12/CXCR4/CXCR7 axis in normal and malignant hematopoiesis: a possible therapeutic target in hematologic malignancies[J]. Eur J Pharmacol, 2022, 920: 174831. doi: 10.1016/j.ejphar.2022.174831
    [40]
    Zeng Y, Li BH, Liang YY, et al. Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumor-bearing mice by prevention of immunosuppression in the tumor microenvironment[J]. FASEB J, 2019, 33(5): 6596-6608. doi: 10.1096/fj.201802067RR
    [41]
    Cheng BB, Wang W, Liu T, et al. Bifunctional small molecules targeting PD-L1/CXCL12 as dual immunotherapy for cancer treatment[J]. Signal Transduct Target Ther, 2023, 8(1): 91. doi: 10.1038/s41392-022-01292-5
    [42]
    Ramaiah MJ, Tangutur AD, Manyam RR. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy[J]. Life Sci, 2021, 277: 119504. doi: 10.1016/j.lfs.2021.119504
    [43]
    Shen C, Li M, Duan YJ, et al. HDAC inhibitors enhance the anti-tumor effect of immunotherapies in hepatocellular carcinoma[J]. Front Immunol, 2023, 14: 1170207. doi: 10.3389/fimmu.2023.1170207
    [44]
    Yussuf Khamis M, Wu HP, Ma Q, et al. Overcome the tumor immunotherapy resistance by combination of the HDAC6 inhibitors with antitumor immunomodulatory agents[J]. Bioorg Chem, 2021, 109: 104754. doi: 10.1016/j.bioorg.2021.104754
    [45]
    Bian JL, Bi XL, Wang M, et al. Dual PD-1/PD-L1 & HDACs inhibitors, and their preparation methods and applications: CN113387840A [P]. 2021-09-14.
    [46]
    Anu RI, Shiu KK, Khan KH. The immunomodulatory role of IDO1-Kynurenine-NAD+ pathway in switching cold tumor microenvironment in PDAC[J]. Front Oncol, 2023, 13: 1142838. doi: 10.3389/fonc.2023.1142838
    [47]
    Abdulla M, Alexsson A, Sundström C, et al. PD-L1 and IDO1 are potential targets for treatment in patients with primary diffuse large B-cell lymphoma of the CNS[J]. Acta Oncol, 2021, 60(4): 531-538. doi: 10.1080/0284186X.2021.1881161
    [48]
    Liang XW, Gao HW, Xiao J, et al. Abrine, an IDO1 inhibitor, suppresses the immune escape and enhances the immunotherapy of anti-PD-1 antibody in hepatocellular carcinoma[J]. Front Immunol, 2023, 14: 1185985. doi: 10.3389/fimmu.2023.1185985
    [49]
    Feng ZQ, Chen XG, Zhou C, et al. Compounds contained disulfur bond, their preparation methods and pharmaceutical compositions and applications: CN115073442A[P]. 2022-09-20.
    [50]
    Jiao SP, Xia WY, Yamaguchi H, et al. PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression[J]. Clin Cancer Res, 2017, 23(14): 3711-3720. doi: 10.1158/1078-0432.CCR-16-3215
    [51]
    Ofori S, Awuah SG. Small-molecule poly(ADP-ribose) polymerase and PD-L1 inhibitor conjugates as dual-action anticancer agents[J]. ACS Omega, 2019, 4(7): 12584-12597. doi: 10.1021/acsomega.9b01106
    [52]
    Page DB, Bear H, Prabhakaran S, et al. Two may be better than one: PD-1/PD-L1 blockade combination approaches in metastatic breast cancer[J]. NPJ Breast Cancer, 2019, 5: 34. doi: 10.1038/s41523-019-0130-x
    [53]
    Hayashi H, Nakagawa K. Combination therapy with PD-1 or PD-L1 inhibitors for cancer[J]. Int J Clin Oncol, 2020, 25(5): 818-830. doi: 10.1007/s10147-019-01548-1
    [54]
    Yang XC, Cheng BB, Xiao Y, et al. Discovery of novel CA-4 analogs as dual inhibitors of tubulin polymerization and PD-1/PD-L1 interaction for cancer treatment[J]. Eur J Med Chem, 2021, 213: 113058. doi: 10.1016/j.ejmech.2020.113058
    [55]
    Zhang H, You QD, Xu XL. Targeting Stimulator of interferon genes (STING): a medicinal chemistry perspective[J]. J Med Chem, 2020, 63(8): 3785-3816. doi: 10.1021/acs.jmedchem.9b01039
    [56]
    Samson N, Ablasser A. The cGAS-STING pathway and cancer[J]. Nat Cancer, 2022, 3(12): 1452-1463. doi: 10.1038/s43018-022-00468-w
    [57]
    Wu LX, Li ZW, Yao WQ. PD-Ll/STING Conjugates and methods of use: US11596692[P]. 2023-03-07.
    [58]
    Li QK, Chen Q, Klauser PC, et al. Developing covalent protein drugs via proximity-enabled reactive therapeutics[J]. Cell, 2020, 182 (1): 85-97. e16.
  • Cited by

    Periodical cited type(3)

    1. 范娜,蒋登蓉,王瑜. PD-1/PD-L1抑制剂在肺癌合并肺结核患者中的应用与研究进展. 检验医学与临床. 2025(07): 998-1002 .
    2. 马月,包鑫鑫,郭云泉,单智慧,刘思卉,刘盟. LEPRE1联合PD-L1免疫治疗生物标志物对不同亚型食管鳞癌患者免疫疗效及预后评估的价值. 新疆医科大学学报. 2024(11): 1512-1520 .
    3. 潘文迪,朱登辉,毛理江,邵振平,赵凯. 细菌及其衍生物在肿瘤联合治疗中的研究进展. 中国生物工程杂志. 2024(12): 76-90 .

    Other cited types(1)

Catalog

    Article views (1009) PDF downloads (100) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return